. iR
EN« -
s e b A

Pagers Presented at LC.C. Conference
Washington D.C,
Oct. 1972

(::) The information contained in these documents remains the copyright

of the Confercnce organizers and The Plessey Company Limited.

PLESSEY TELECOMMUNICATIONS RESEARCH LIMITED,
TAPLOW COURT,
TAPLOW, MAIDENHEAD,
BERKSHIRE,
ENGLAND .

CONTENTS

A CAPABILITY ORIENTED MULTI-PROCESSOR
SYSTEM FOR REAL-TIME APPLICATIONS oo ‘oo oo

FAULT RESISTANCE AND RECOVERY
WITHIN SYSTEM 250 “ee ces ‘e oo oo

RELIABILITY ASSURANCE FOR SYSTEM 250

A RELIABLE, REAL-TIME CONTROL SYSTEM cee PN

STRUCTURE AND INTERNAL COMMUNICATIONS
OF A TELEPHONE CONTROL SYSTEM oo oo oo

D.C. Cosserat

K.J. Hamer-Hodges

C.S. Repton

J. Crompton

A CAPABILITY ORIENTED MULTI-PROCESSOR SYSTEM
FOR REAL-TIME APPLICATIONS

D. C. Cosserat

Plessey Co. Ltd.
Liverpool, England

Summarz

‘The system under consideration is a multi-
processor, multi-storage module configuration
adapted to the processing and fault security
requirements of such real-time applications as
telephone switching, message switching, and radar
systems control. Each processor accesses store
independently and asynchronously and each region
of store to which it has immediate access is
bounded by an addressing structure known as a
Capability. The capability has a dual purpose.
It acts as a protection mechanism against hardware
and software failure; and it defines a logical
unit of contiguous storage space (a "segment'") out
of which all operating system and application data
structures are built. A segment may contain
either data or capabilities permitting a list
structure of interconnected segments to be
established.

Each processor executes instructions contained
in data segments, achieving linkage from segment
to segment, and in so doing manipulates the data
structure appropriately. One particularly
significant feature of the system is that it is
possible for a running program to make copies of
capabilities which it can store arbitrarily into
the data structure. The operating system reduces
essentially to a series of 'protected subroutines',
each subroutine possessing just the capabilities
required to gain appropriate access to the data
structure. There exists therefore a graded
approach to storage protection and a complete
lack of the visual division into 'special' and
'normal’' modes of machine hardware operation.

Introduction

Computer systems are characterised by their
ability to provide 'general purpose' solutions to
specific logical problems. In the telecomm-
unications field, in particular, the computer may
be used as a centralised control mechanism which
replaces the logical functions often formerly
provided by distributed hardware devices. Thus,
for example, the centralised computer system can
be used to control telephone switching hardware
which itself contains little or no sequential
logic either from a mechanical or electronic
point of view. Similarly a computer may be used
to provide automatic routing of messages in a
message switching network; automatic information
retrieval, computation, and display in an air
traffic control environment; centralised control
of industrial processes; network control of
~d istributed systems such as electricity and gas

grids; area control of road traffic schemes; etc.
Three important factors relevant to these
systems are security, growth and obsolescence.
Real-time systems whose operation affects a lerge
number of human beings must be capable of with-
standing long periods between system failures.
In some cases this requirement arises from an
economic or strategic need (in telephone switching
systems, for example) and in others (such as air
traffic control) human lives are directly involved.
The second factor arises because telecommunications
networks have traditionally been designed so that
increases in size and 'traffic' carrying capacity
can be accommodated over a period of years.
Thirdly the nature of telecommunications networks
and, in particular, the amount of capital invest-
ment required implies that systems installed today
should not become rapidly obsolescent.

Traditionally, the kind of computers that have
been applied to these real-time control tasks have
emerged from two quite different stables; on the
one hand, system designers have made attempts to
adapt computing equipment developed in the data
processing environment to the requirements of real
time control, and on the other hand engineers who
have experience of existing electromechanical and
electronic techniques have tried their hand at
producing computer systems. This dichotomy of
discipline has led in the past to a polarisation
of ideas on how real-time centralised control
systems should be built. As a broad generalis-
ation it might be said that the computer
engineers have failed to design systems which have
the security and expandability features so
characteristic of telecommunications systems,
whilst the telecommunications engineers have
failed to design systems which promote to the full
the control flexibility afforded by software
technology.

In order to illustrate the problems confronting
the computer system designer in this field it is
useful to select a particular case for analysis.
The case chosen here is that of the telephone
switching control problem because it represents a
particularly comprehensive example of conflicting
requirements. Designers who are interested in
other real time application areas will, however,
recognise many analogies with their own problems.

In the case of telephone switching control, it
was thought for a long period of time that the
major problem involved was the tricky technological

one of designing a centralised control device to
obey the necessary logical steps to control the
switches involved in setting up a circuit from

one telephone subscriber to another. This was
obviously the immediate and central task and it
was tackled in a variety of different ways. Some
solutions involved hardware-wired logic as the
means of centralised control, others involved

the use of a computer-like device which fetched
instructions from a read-only store, and yet others
utilised a true computer configuration in which

a processing unit fetched instructions from and
modified data in, a read/write store. At the
beginning, it did not really seem to matter very
much which particular system was chosen because
the central problem of switch control was identical
in all cases, and often the decision as to which
system to adopt depended on the design experience
and background of the individuals concerned.

On the basis of a computer's ability to set
switches in a telephone network, it was also
arguable that there were no obvious advantages
in any of these approaches over the previous
electromechanical systems. Certain peripheral
advantages were said to accrue such as 'system
flexibility', but what exactly did this mean, and
how was such a nebulous term to be quantified?
Nowadays, it is possible to enumerate a number of
facilities provided by a computer controlled
telephone switching system. For example,

automatic fault diagnosis

centralised maintenance

network monitoring

automatic accounting

integrated manual assistance facilities
special subscriber facilities

All these factors were, of course, recognised
by the advocates of centralised control, but they
were regarded as a bonus to the more immediate
problem of the switching task itself. A closer
examination of these and other similar facilities
leads, however to a new concept: a centralised
computer system for telephone switching control
must be regarded as an administrative unit which
interfaces primarily with the staff of the tele-
phone administration. Except for the provision
of special facilities, the interface to the tele-
phone subscribers is of secondary significance
since it necessarily remains very much the same as
in all previous systems.

In a computer controlled telephone network all
the above facilities can be provided in a central-
ised manner. Fault diagnosis and maintenance can
be handled by a relatively small staff via inter-
active video-displays; network monitoring programs
can be similarly controlled by a few staff at a
centralised location. Automatic accounting soft-
ware can remove the human data preparation link,
passing metering information from individual calls
into a form suitable for the direct printing of
accounts. Manual board operators can communicate
_via similar video displays on which all inform—
ation pertinent to the call is recorded. The
operator has sufficient control to achieve the

required objective without the necessity of any
administrative overheads, such as the filling out
of dockets: 1instead, the system records the call
details and cost automatically and routes it
directly through to the sccounting software system.
This approach implies a unification of system
design and, where necessary, the derivation of
simple and standard ergonomic interfaces with
those staff who control it. The activities
mentioned above are summarised in Figure 1.

SUBSCRIBERS o
SPECIAL
FACILITIES r SWITCHING HAROWARE]
TELEPHONE —
SWITCHING
SIGNALS

CENTRALISED
COMPUTER SYSTEM

___Q COMPUTER SYSTEM
] CONTROL
PRINTED
L———-—' ACCOUNTS
FAULT DIAGNOS:S
& MAINTENANCE

ENGINEERS

NETWORK
1 MONITORING
ENGINCERS

‘ ' MANUAL
' ASSISTANCE
l ,] OPERATORS

ACCOUNTS & NEW
SUBSCRIBERS
STAFF

Fig. 1 ORGANISATION OF A CENTRAL

PROCESSING SWITCHING UTILITY

Once the centralised control system is regarded
as an aid to administration of the network, and
once it is understood that it is here that the
real economic advantages lie, the requirements of
the centralised computing system necessary to
support such activities become very different from
those needed to handle the switching problem it~
self. In particular it is clear that wired logic
or read-only program storage systems will not
provide the necessary flexibility; and it is clear
also that comprehensive software facilities are
required to sensibly tackle the application
requirements of what has become a real-time system
with multi-access control.

The General Purpose Computer

It is clear from the foregoing telephone
switching example that the problems of large and
comprehensive central control systems are not
amenable to solution either by dedicated tele-
communications processors or by existing computers
designed for the data processing environment.

Here is a list of some of the more obvious and
important requirements:

ABILITY TO RUN REAL-TIME PROGRAMS
MULTI-PROGRAMMING FACILITIES

MULTI-ACCESS FACILITIES FOR MAN/MACHINE
CONTROL

STRICT INFORMATION FROTECTION BETWEEN
PROCESSES

THE CONVERSE ABILITY TO SHARE INFORMATION
BETWEEN PROCESSES WHERE REQUIRED

HARDWARE EXPANDABILITY IN INDEPENDENT
INCREMENTS OF STORAGE AND PROCESSING POWER

AUTOMATIC RECONFIGURATION FOLLOWING SYSTEM
FAILURE

FLEXIBLE INTERFACING TO DISTRIBUTED
EQUIPMENT AND TO MAN/MACHINE DEVICES

In the light of these requirements, and the
fact that existing data processing systems do not
match up to all of them, we prefer to reserve
the term 'general purpose computer for a system
which meets all these characteristics. Given
this definition, it becomes clear that neither
existing data processing systems nor telecommuni-
cations processors can in any sense be regarded as
'general purpose’.

Design Considerations

In order to achi-ve the above design objectives,
a combination of hardware and software technological
innovations must be employed. One particularly
important feature involves system expansion.

The computer configuration must be capable of
expanding in two important aspects: there should
be no practicable limits on the size of the fast
store; and there should be as wide a range as
possible of processing power. In each of these
cases, the hardware should be expandable in
reasonably small increments so as to permit a
smooth rate of increase in capital investment in
the system. It is particularly important that
increases in storage and processing power can be
achieved independently, since there is no obvious
correlation between one and the other over a wide
range of possible systems. Therefore a true
multi-processor system which can contain a
variable number of processing units and a variable
number of storage modules is the ideal for the
application.

The system must be resilient against both solid
and transient hardware failures, and similarly
against software bugs (which have many of the
characteristics of transient hardware failures).
This requirement means in practice that the system
should be capable of automatic reconfiguration (i.e.
switching out the failed hardware module) and
recovery (i.e. the ability to return to the execut-
ion of a coherent program and data base).

The general purpose computer must also be capable
of interfacing freely with a wide range of distribut-
ed telecommunications equipment, which may be remote
from or local to the computer itself, and also must
interface with man/machine devices such as video-

displays and other computer peripheral devices.

Design Conflicts

The above remarks are addressed to some of the
more obvious and important features of the general
purpose computer. But some of the design require-
ments conflict and it is necessary to examine
these conflicts in some detail.

The first design conflict arises from the
requirement on the one hand to use the processors
in a 'work sharing' mode to meet the requirements
of a multi-programming, multi-processor system and
on the other to respond quickly to interrupts
generated by signals from the real-time system
under control. Each processor must inherently be
capable of obeying any program steps in the system
(a functional approach involving the division of
processors to specific tasks would conflict with
the multi-processing requirement and with the
need to expand the system with little software
re-organisation).

The execution by a processor of a program
is conventionally termed a process. In a
multi-processor system there can clearly be as
many processes in simultaneous execution as there
are pro:essors, but there may be an undefined
number of additional processes which are blocked
awaiting logical events or are freed but have no
processor on which to run. When a process runs,
the processor contains in its hardware registers
information relevant to that process and when the
process blocks, that information must be stored
away. In a processor with several registers, the
storing of their contents may involve many store
accesses. An interrupt is caused by an event in
the outside world which raises a signal into the
computer system. This causes the processor to
cease its present activity (i.e. to temporarily
block the running process) and to execute an
'interrupt process' instead. The changeover
from one process to the other involves the storing
and loading of registers and hence there is a
processing time 'overhead' on each interrupt.

In a single processor environment, this
problem is often solved by the use of a second set
of registers reserved for the interrupt prccess.
In a 'work-sharing' multi-processor system this
approach is not possible because the interrupted
process is still logically free to run and may be
picked up immediately by another processor. In
this situation, the information concerning the
process which is stored away in the first
processor's register set is completely inaccess-
ible to the second processor. Since the common
medium of communication between processors is the
store, it follows that the register information
of an interrupted process must be written to store
where it may be retrieved subsequently by another
(or the same) processor. This register storing
overhead is a theoretical limitation on a true
multi-processor system and as such represents a
design conflict between the attributes of such a
system and the requirement to respond quickly to
interrupts.

The second design conflict arises because of a
potential fault security hazard in the universal
sharing of store by all the processors in a multi-
processor system. In order to provide a system
which is expandable in independent increments of
storage and processing power it is necessary to
abandon the usual concept of a computer as
'processing unit plus store'. The corollary
ot this divorce between processor and dedicated
store is that a storage module belongs to no
processor in particular and is equally accessible
from all processors. Such a system organisation
achieves the hardware modularity constraint at
the expense of another; namely, resilience
against store corruption which could lead to
undetectable system failure. The concept of a
multi-store, multi-processor system, which is so
attractive from the point of view of modularity,
is wide open to the possibility of storage
corruption from any processor that fails trans-
iently or permanently. Therefore there is a
design conflict between 'equal availability of
all storage locations' and 'potential damage to
storage contents by a faulty processor'.

System 250 - A General Purpose
Computer

An attempt has been made to embody the general
design principles described above in the Plessey
SYSTEM 250 central processing system. This
system is designed for precisely the range of
applications described and in particular for
the control of administration and switching
functions in a telephone switching environment.
The design includes the following features which
are compatible with and a consequence of the
requirements of a general purpose computer.

Firstly, the hardware is designed as a multi-
processor, multi-storage module configuration as
represented in Figure 2. Each processor may
access any storage location in any store module
over its own bus. Thus the modularity and
incremental expansion requirements of the general
purpose computer are satisfied.

Secondly, each processor is capable of

detecting a range of hardware fault indications
which will cause a fault interrupt to be auto-
matically generated. The processor discontinues
execution of the current process and switches to

a fault interrupt process instead. The instruct-
ions obeyed by this process are, of course, fetched
from store in the usual way but, should a subse-

quent fault interrupt be generated in that processor

during the time that it is executing the fault
interrupt process, the processor steps to the next
storage module and recommences the process by
fetching instructions from it. Thus, a failure
in the storage module itself or corruption of its
coatents does not cause a permanent failure of

the prozessor which received the original fault
interrupt. The essential hardware mechanisms

are therefore provided as a basis for an auto-
“matic reconfiguration software system.

STORE
cPu MODULE
STORE
cpPy MODULE
STORE
cPu MODULE
sus
MUX
B8US P —1
sPA
MU X
1 sea (:’
i 1)
Py PV
SIv
4
S
CPU - CENTRAL PROCESSOR UNIT
MUX - MULTIPLEXER
SPA- SERIAL/PARALLEL ADAPTOR
DS - DATA SWITCH
PIU- PARALLEL INTERFACE UNIT
S1U- SERIAL INTERFACE UNIT
FIG. 2 TYPICAL HARDWARE CONFIGURATION

Thirdly, a flexible interfacing medium enables
the system to be adapted to a wide range of
peripheral equipment. The interconnection
network is in the form of a bit-serial medium which
transfers 'messages' between computer system and
the periphery in both directions. A standard
serial interface makes it possible to build a
structure of 'primary' and 'secondary' electromic
switches to suit a particular configuration and
to interface simply to man/machine interactive
devices. This satisfies the requirement that a
general purpose computer should be connectable

s

s
k>

S]

P

a~

¥4

oy’

in a flexible manner to a wide range of telecomm-
unications and other equipment.

Given the above general features, it is now
necessary to describe how the system overcomes
the two basic design conflicts mentioned above.

Interrupis

The first conflict concerns the incompatibility
between a truemulti-processor system and the
'overheads' involved in servicing an interrupt.

An examination of this problem led inevitably
to a study of the history of interrupt mechanisms.
Very early computers which had no interrupt
systems suffered from the major disadvantage that
tests of peripheral device status had to be inserted
into the program at regular intervals. A natural
consequence of this was the design of interrupt
hardware which performs this testing between the
execution of each instruction. When an interrupt
occurs, the processor ceases to execute its
current process and switches automatically to the
execution of an interrupt process. In the case
of input data, this process typically does nothing
more than place the information in a software
organised queue in store. This queue is unloaded
by a normally scheduled process and the information
is then analysed and used as appropriate for the
application. In its role of executing the
interrupt process, the processor is behaving
essentially as a hardware queueing mechanism and
can therefore be replaced by a hardware queue in
the interface between the serial medium and the
processing system. In SYSTEM 250 the unit known
as the Serial/Parallel adaptor (see Figure 2)
performs this function and, typically, can queue
up to sixteen messages to and sixteen messages
from the serial medium. A normally scheduled
process unloads the messages from the hardware
queue directly.

Another input/output requirement involves the
transfer of data from magnetic backing storage
devices such as drums and discs. Since it is
usually uneconomic in conventional systems to
withstand an interrupt for each word or character
transferred, the standard approach is to use
channelling hardware which moves data directly
between ‘burst mode' devices and store. During the
transfer the processor is free to perform its
usual functions and only receives an interrupt from
the channelling hardware when the data transfer is
complete. The usual characteristic of channelling
hardware is that it is both elaborate and expensive;
and. it is, perhaps, unfortunate that there appears
to be a tendency amongst computer designers in the
direction of more elaboration and more expense.
Some channellers are completely hard-wired, others
obey special instructions fetched from store and
begin to look very much like special purpose
computers. SYSTEM 250 has taken this trend to its
logical conclusion and utilises the standard
processor module as a channeller. This approach
has two very important advantages. Firstly, in a
secure system there is no additional 'sparing'
problem. Whereas it would have been necessary to

provide a second channeller as a fault security
backup, the additional processor now required for
channelling work can share the existing spare proc-
essor(s) required to maintain processing security.
Thus, in the majority of system configurations,
the cost comparison is between one processing
module and two channeling modules. Secondly,
there is now no requirement for interrupt gener-
ation at the end of a data transfer because the
processor itself can continue to process what
would have been the interrupt response routine.

The two features of SYSTEM 250 described
above, namely hardware message queueing and the
use of the processors as channellers, has
abolished the need for external interrupts and has
therefore resolved the conflict between interrupts
and the efficient operation of a true multi-
processor system. Additionally it has provided a
cheap and conceptually elegant form of input/output
control.

It should be observed, in conclusion, that
there are still three mechanisms in a SYSTEM 250
processing module which can force a change of
process: the first is due to a program trap
condition; the second occurs when the processor's
interval timer clock value reaches zero; and the
third is due to the occurrence of an internally
detected fault condition. Although these
conditions may colloquially be referred to as
'interrupts', the common characteristic is that in
no' case is the condition externally imposed. The
abolition of inter—processor and device-processor
interrupt lines has a significant effect on the
security of the hardware and makes it simpler to
isolate processors and peripheral units following
hardware failure.

It can be seen from the above discussion that
the requirements of the general purpose computer
are highly interactive. Both security require-
ments and the need for interrupt free operation of
the multi-processor system affect the input/output
economics in an unexpected way. By turning these
conflicting constraints to advantage rather than
by adopting some conventional compromise solution,
it has proved possible to realise a simpler and
more economically attractive solution to the
problem.

Storage Protection - The Capability

The second design conflict which must be
solved in the quest for the general purpose
computer concerns the potential for storage
corruption in a true multi-processor system. Two
separate fears may be expressed on this subject.
Firstly, there is the fear that processors which
have access to the whole of the storage system
may corrupt the program and read-only data held
there. This will almost certainly result in a
catastrophic failure of the system with instructioms
and data constants coverted to random values.

This problem has led some designers to criticise
the nature of an alterable store for critical
real-time applications and to suggest that the
older schemes of wired logic processors or of

computers with their own dedicated storage modules
are more adapted to the requirements.

As will be shown below, the nature of the
problem is not 8o much the velatility of the
storage medium itself as a lack of discipline on
the part of the processors in their attempts to
access it. It is this latter aspect to which
attention has therefore been turned in an attempt
Lo preserve the general purpose features of a
freely alterable storage system.

The second fear is that, even in a system where
read-only and read-write information is strictly
segregated, there is still the possibility that
faulty processors will obey random instruction
sequences, attempt to obey read-only data as
instructions, and alter read-write data values
to which the currently obeyed program has no
logical access. In short, even in a partitioned
system of this type there is still much scope for
corruption of store and therefore of system fail-
ure.

Solutions to this information protection
problem typically involve the use of base-limit
protection registers which partition the store
into a number of contiguous regions or segments.
Further protection measures may be applied to
restrict access, such as the 'rings of protection'
scheme suggested by Graham (reference 1). What
is required, then, is a mechanism which permits
the programmer precisely to define those data
structures which will be made accessible to a
running process and, by default, those which will
not. There must be no system feature which
prevents information sharing where this is
logically required, and conversely, no system
feature which permits information sharing where
this is not logically necessary.

The solution which has been chosen in SYSTEM 250
involves the provision of hardware protection
features which permit a given running process to
access only those regions of store that the
programmer originally intended. This is achieved
by means of a universal segment identifier known
as a capability. A capability is an invarient
address which defines (a) the absolute location
of a segment of storage, (b) the length of the
segment, and (c) the kind of access permitted
(read-only, execute only, read-write, etc.).

What distinguishes a capability from a traditional
base-limit protection address is that it can be
freely copied by the running process itself (i.e.
it can be loaded into a machine register and can be
stored into a storage location), but that its con-
tents can in no way be altered. The concept of

a capability originated in the work of Dennis and
Van Horn (reference 2), and was proposed in the
present freely copiable form by Fabry (reference 3).
The use of the capability mechanisms in SYSTEM 250
has already been described in detail elsewhere
(reference 4) and no further elaboration will be
attempted here.

The essential feature of a capability is its
ability to permit the currently running process

access to carefully controlled and logically
necessary regions of the store. The hardware is
arranged so that there is no way in which a process
can manufacture data patterns and convert them into
capabilities; thercfore, there is no way in which

it can gain access to, and possibly corrupt, other
regions of the store. This, then, is what is
required in order to prevent the collapse of a multi-
processor system due to storage corruption by a
single processor.

The corollary of the above is that, when fauits
do occur in a processor, the strict control of base,

limit and access conditions assist the system
greatly in the fast detection of failures.

Software Implications - The Operating System

The capability was primarily developed as a
mechanism for storage segmentation and information
sharing rather than for hardware protection. Of
course, its protection features were always
recognised in the context of protection between
programs and it is here that the major software
implications lie.

One of the criteria of the general purpose
computer is that it should be capable of information
sharing. This is a critical requirement for many
real-time applications where many transactions are
represented by processes sharing a common data
base, but may also be considered a general require-
ment of any computer system in which multi-access
facilities are required. Computer systems which
do not allow good information sharing character-
istics must resort to software control of shared
storagz and sometimes to the provision of
separate copies of program for ‘each process which
requires to obey it. We may restate the require-
ments as follows: a multi-processor system should
be able freely to execute code re-entrantly and
should be able to access shared information when,
and only when, this is a requirement of the program
logic. The capability mechanism gives us exactly
this property. Information sharing is permitted
when required, and entirely denied when access is
not logically necessary.

The protection afforded by the capability
mechanism is extended in SYSTEM 250 to the inter-
faces between subroutine linkages. A program can
only perform a subroutine call if it possesses the
necessary capability for the subroutine. The
access condition set into that capability permits
'‘enter access only: that is, the capability can only
be used to perform a subroutine call and not to gain
access to the called subroutine's capabilities and
hence to its data structure. Therefore the called
subroutine's data structure is completely inaccess-—
ible to the calling routine. Similarly, once a
routine has performed a subroutine call, the
capabilities awned by that routine are denied to
the subroutine and this satisfies the converse
condition, that the calling routine's data
structure is completely inaccessible to the
routine. Information interchange between
such routines is therefore strictly limited
which the programmer intended: information

called
two

to that
may be

passed as parameters in the form of data and/or
capabilities in the machine registers; or
information may be made permanently acceassible to
both calling and called routines, by placing in
each routine's data structure a capability point-
ing to the shared information.

Given the inter-routine capability protection
mechanism, it is now possible to construct all
programs in a subroutine hierarchy irrespective
of whether these programs are conventionally
regarded as part of the application software or
part of the Operating System software. This
fact has had a dramatic effect on the design of the
Operating System for SYSTEM 250 because it permits
us no longer to regard it as a monolithic software
package protected from application software
corruption by means of a single impenetratable
barrier. Rather, each logical function in the
Operating System is treated as a distinct
protected subroutine so that the storage protection
philosophy within the Operating System structure
relies on the same capability mechanisms as those
utilised by the application programs. The
result of such an organisation is that the syectem
is not split into separate application and Operat-
ing System monoliths separated by a 'special
supervisor mode' of hardware operation and the
distinction between an Operating System and an
application subroutine becomes one of administrative
significance only.

List Structured Addressing

It has been stated previously that what
distinguishes a capability from a conventional
base-limit protection mechanism is the ability of
the running process to perform load and store
operations on capabilities by means of hardware
instructions embedded in the program. This con-
trasts strongly with systems in which the reloading
of base~limit registers is undertaken indirectly
by software in 'supervisor mode’.

The free copiability property of capabilities
enables the programmer to use them as invarient
addresses in an arbitrary list structure and,
indeed, an unlimited number of copies of & given
capability can be generated. This distinguishes
the capability mechanism from other invarient
address schemes, such as the Burroughs descriptor
(reference 5) which essentially restricts the data
structure to a tree-like representation.

The arbitrary information sharing properties of
the capability are exploited in the SYSTEM 250
Operating System to provide, in a gsimple manner,
multi-programning and multi-access facilities.
Firstly, the ability to arbitrarily share code
segments means that all Operating Sysztem routines
can be obeyed re-entrantly by many processes.
Secondly, it is possible to strictly protect the
information belonging to one multi-access user from
that belonging to another. And, thirdly, it is
possible for multi-eccess usersgto share informatien
in a controlled wanner through a system of direct-
ories. The directory structure is similar in con-
cept to that provided by the HMULTICS Operating’

System (reference 6) but it differs in the following
important respect: whereas, the directory structure
in the MULTICS system is organised as a tree, the
directory structure in SYSTEM 250 can be organised
as any arbitrary list. Thus, the inter-connection
of directories exactly mirrors the hardware level at
which the capability mechanism permits an arbitrary
interconnection of segments. This feature can be
exploited to give precise informatiocn sharing
properties to a system comprising groups of users

of various classes. Our telephone switching
example illustrated some of the many man/machine
interaction requirements involving the sharing of
some information. However, many of the classes of
user are performing quite specific and separate
tasks which do not require a great deal of
administrative interaction. This is reflected

in the organisation of directories to which these
ugsers are given access: it is the responsibility

of the administration to crganise the directories
into a suitable list structure.

Conclusions

In conclusion, therefore, it has been shown
that the requirements of computer systems in
telecomnunications applications are far removed
from the facilities conventionally provided by
either telecommunications processors or data
processing machines. The facilities of a
‘general purpose computer' suitable for these
applications have been derived, the main features
being incremental expandability of storage and of
procesging power, automatic reconfiguration of the
system following hardware or software failures,
and the simple interconnection to distributed
telecommunications equipment and to man/machine
interface devices.

It has been argued that to satisfy the above
features, a computer system should be organised
as a multi-processor with each processor equally
capable of sharing the work available. This
recuirement in turn leads to two design conflicts
which have been resolved in the design of the
SYSTEM 250 computer system by, firstly, the
abolition of external interrupts and, secondly,
the use of a universal segment identifier known as
a capability.

It has further been illustrated that the design
solutions to these two conflicts have been turned to
our own advantage because the problems involved have
forced us to think out from first principles the
necessary and sufiicient features of a true
‘general purpose' computer system. In particular
we have been able to avoid an expensive and self-
defeating approach to the production of channelling
hardware, by recognising that the trend in this area
towards increasing complexity implies a trend to-
wards the use of standard processing equipment; we
have been able to capitalise on the protection
features of the capability mechanism by the design
of a modular Operating System organised as a series
of protected subroutines; and we have used the
concept of free copiability of capabilities to
reflect into the user terminal level of the system
the idea of an arbitrarily interconnected structure

of directories.

In particular, the capability mechanism, which
is such a central feature of the SYSTEM 250 hard -
ware architecture, enables - us to claim three
quite distinct achievements: the protection of
information in a multi-processor system against
hardware failure, the modularisation of Operating
System and application software into a protected
subroutine hierarchy, and the efficient and
arbitrarily constrained sharing of data structures
between competing processes. This leads us to
believe that this concept represents a significant
and essential advance in both hardware and soft-
ware technology and that SYSTEM 250 provides both
the sufficient and the necessary features of a
'general purpose computer’'.

References

1. Graham, R.M. "Protection in an Information
Utility", Comm. ACM, 11, 5
(May 1968) pp. 365-369.

2. Dennis, J.B, and
E.C. Van Horn''Programming Semantics for Multi-
) programmed Computations', Comm.
ACM, 9, 3 (March 1966),
pPp. 143-155. '

3. Fabry, R.S. "List Structured Addressing".
PhD. dissertation - University
of Chicago, Illinois, (June 1970).

4. England, D.M. "Operating System of System 250".
Proceedings of the International
Switching Conference, Boston, Mas.
(June 1972).

5. Burroughs "The Descriptor” - A Definition
Corporation of the B5000 Information Process-
ing System - Detroit, 1961.

6. Bensoussan, A,"The Multics Virtual Memory".
Clingen, C.T, Proc. Second ACM Symp. on
Daley, R.C. Operating Systems Principles,

Princeton, N.J. (Oct. 1969).

Acknowledgement

I would like to acknowledge the contribution
of my colleagues who were involved in the design
of the System 250 and, in particular, the valuable
contribution of M. O'Halloran who understood before
most of us what Operating Systems were &ll about.
I would also like to thank the Directors of the
Plessey Company for permission to publish this
paper.

FAULT RESISTANCE AND RECOVERY WITHIN SYSTEM 250

K. J. Hsmer-Hodges

Plessey Co. Ltd.
Liverpool, Englind

Summary

This paper describes some of the aspects of the
Plessey SYSTEM 250 real-time processing system, and
is an accompanying paper to those presented by
my colleagues from Plessey U.K.

The requirements of a Real Time processor
system suitable for the control of a communiceations
application are evaluated. The ability of SYSTEM
250 to fulfil these requirements and the hardware
architecture which provides the characteristics
so urgently required by the communications industry
is described.

A general description of the hardware of the
processor is included and the use made of
capabilities in ensuring the detection and isolation
of fault occurences within the working system is
described. Particular attention is drawn to the
fault recovery sequence and the diagnostic
facilities which enable the working system to live
through fault conditions and offer the grade of
service required by the application.

General Introduction

SYSTEM 250 was designed at the outset to meet
the exacting control requirement of telephone or
data message switching systems. It should be
appreciated that this application demands an
exceedingly high standard of performance in almost
all of the areas considered important in Real
Time applications. Convential computer systems are
inadequate when examined against the essential
requirements already established by conventional
switch equipments. The characteristics of a
computer system which will satisfy the stringent
requirements of exchange control are summarised
under the following headings:

Continuity of service

Ease of expansion

Ability to Evolve

System Partitioning and Security
Flexibility

High Power/Cost Ratio

Continuity of Service

The British Post Office has devised a sliding
Scale defining the allowed minimum reliability of
telephone exchange control equipment. The scale
ranges over steps from failures of the control ~
equipment of less than 15 seconds which can be
tolerated up to 50 times per year, to failures of
more than ten minutes which should not occur more
than once in 50 years. These reliability figures
must be maintained despite:

(a) The existence of undetected software errore
wvithin the system.

(b) Occasional on-line expansion or modification
of both the hardware and the software components,

(c) The need for long periods of unattended
operation.

Ease of Expansion

A further requirement is that each individual
system should be economically viable from the date
of first installation. They must offer a growth
potential such that the system is capable of
ON-LINE expansion of any facility (e.g. Storage, .
Processing Power, or Input-Output Capability) by a
factor of three during the expected life of 25
years. These extensions should not require al-
terations or re-compilation of the existing prog-
rams or cause any loss of service.

Ability to Evolve

A computer system which is expected to be
operational for more than two decades can only
remain economic if its architecture permits .the
inclusion of advances in hardware technology. The
sof tware architecture must also provide the
flexibility necessary to absorb the undoubted
changes which will be required to provide the,
as yet, unforeseen facilities to be offered
in the future.

System Partitioning and Security

The system hardware and software must be
partititioned in a secure manner such that
information transfers can be monitored, and
faults or errors detected quickly and contained.
The aim is to prevent corruption of and/or un-
authorised eccess to system resources, in
particular storage media, with minimal overheads
in power, cost and complexity.

Flexibility

The control system is required to be flexible
in both the hardware and software architecture
such that a wide range of configurations with
differing requirements can be controlled by
differing configurations which minimise the cost
of each system. In particular the system must
be capable of efficiently controlling large
numbers of low activity peripheral devices.

Introduction to System 250

SYSTEM 250 is a modular multi-processor
system. The central system modules are
Stores, Processors, and Multiplexors. Standard
and non-standard Peripheral devices of all types

can be attached as will be described subsequently.
Twenty four bit word lengths are used for all
memory addressing, instruction formats, and data
storage. Thus the total memory capacity is in
theory in excess of 16 million words. The inst-
ruction repertoire has been simplified to twenty
seven basic operations, with inter-register, store
and register or literal options available when
meaningful.

Peripherals Devices are addressed via
Control and Data registers which appear to the
Processor to be exactly, similar to the normal random
access storage connected to the Processors, and it
has, therefore, been possible to pliminate all
specific peripheral handling instructions. Instee .
the normal Load Register and Store Register inst-
ructions are used, with addresses which specify
the appropriate register within the desired
peripheral device.

System Architecture

Interconnection of the Processors to
attendant storage and peripherals is achieved over
a 60 signal bus svstem, each Processor having an
individual bus. Interface Units are used to
attach stores and peripherals to these buses.

See Fig. 1.

[INTERFACE

UNIT

The function of the Interface Unit is to recognise
requests for access to the module , resolve
contention between individual requests from
separate processors, and to allocate each request
a cycle of access to the module. A system with
up to eight processors is currently possible, with
each of the Store Modules equipped with an 8 port
Interface Unat. Peripheral Devices, however, are
equipped with only 2 port Interface Units.
When, therefore, there are 3 or more proceesors,
peripherals connect to a Peripheral Bus system,
driven by Multiplexors which can be equipped with
8 ports. Thus the more expensive 8 port
Interface Units are not required throughout the
Peripheral area. Two Multiplexors are required
for security, and if either one should fail all
traffic is pasged through the alternastive unit.
See Fig. 2.

Up to 40 Modules can be attached to each Bus,
over distances of 100 metres.

Only high activity, or fast speed devices,
need be connected directly to the Bus system, e.g.
Backing store devices. Low activity or slow
speed devices such as user terminals or the
application terminals of a real time system are
connected to a serial data collection and
distribution system known as the Serial

Meviium. See Fig. 3.
. . >
PERIPHERAL }{ PERIPHERALH
DEVICE H DEVICE |
b
INTERFACE f} INTERFACE [}
UNIT UNIT vi

—

PROCESSOR |’

PROCESSOR

Fig 1

system

DEVICE

UNIT

PERIPHERAL ¢

INTERFACE |

PERIPHERALi
DEVICE [

INTERFACE &

INTERFACE |;

[INTERFACE

uniT

STORE

INTERFACE B
LUNIT

be

]

MULTIPLEXOR

PR s]

PROCESSOR

lPROCESSORH

Fig 2 Expanded Processor system showing Multiplexors

APPLICATION DEVICES

vevice R

TELETYPE READER

[SERIAL
PARALLEL
ADAFTON

INTERFACE
VLIRS

TO & FROM THE PROCESSORS

PUNCH

DEVICE B
INTERFACE |

SERIAL
PARALLEL
ADAPTOA

INTERFACE
unit 3

Fig 3 The Serial Medium

The Serial Medium is controlled by a device
connected to the Bus system and known as the
Serial Parallel Adapter (SPA). Packets of address
and data are collected or distributed by the SPA,
via a cascaded arrangement of Data Switches which
multiplex and demultiplex the message paths.
Tarninals can be connected to the Serial Medium
at any switch outlet so that some devices may be
connected at the first switch others at subsequent
switches. Each device has a unique address which
is used to route outgoing messages to the device,
and is assembled during incoming messages to the

FA. Check codes are used to validate all
message transfers.

Each device which is connected to the Serial
Medium is equipped with a 2 port Serial Access
Unit for connection to two separate Serial Mediums.
This is done for security of communication if
either path should fail.

The modular structure of the SYSTEM 250 has
been arranged so that individual system
parameters can be matched in the most economic way
possible, Stores for example can be built up in
units of 8, 16 or 32K in slow, medium or fast
access times ranging from lus to 300ms to match
the data storage requirements. Numbers of
processors can likewise be matched to the work
requirements and the security requirements.
The number of peripheral terminals can similarly
be equated to the requirements of each inetallation.
Further the System can be expanded in small steps
by the addition only of the required module.

Capabilities

Each Processor has access to all modules
connected to the system. Consequently each
Processor represents a security hazard if either
a hardware fault or a software error = ould
corrupt a location by accident. The concept
of Capabilities has therefore been implemented
in the Processors to protect against corruption
of invalid areas of storage, including
Peripheral devices. Reference 1 discusses the
necessity of capabilities and provides more
detailed references. Capabilities are
descriptors which identify the separate 'logical'
entities within the system and the users
access rights to the logical block. The
Operating System loads these logical blocks into
physical address space and allocates the Base
and Limit address values accordingly via a map
known as the System Capability Table.

2 %18

r——

THE BASE ADDRESS

THE ACCESS FIELD I
——

THE LiMiT ADDRESS

t—-——— READ DATA PERMITYED
— WRITE DATA PERMITTED
————— EYECUTED DATA PERMITTED

L READ CAPABILITY PERMITTED

WRITE CAPABILITY PERMITTED

ENTER CAPABILITY PERMITTED

SPARE

Fiﬂb The Capability format

The Hardware of the Processor provides eight
Capability Registers into which can be loaded
the Base, Limit, and Access field of separate
addressable blocks required by the program.

It is emphasised that the use of capabilities
in no way restricts the flexibility of
programming at writing time. The function of
capabilities is to ensure that once defined by
the program, the limits (Base, Limit and Access
Rights) are observed by the hardware and the
process at run time, even under fault conditions.

Thus capabilities are a valuable mechanism
in protecting against the tyve of fault which
cauges the progressive corruption and final
breakdown in a multi-processor system, The
basic aim in using capabilities is to restrict
the effect of a fault to the currently running
process, and to identify the existence of a
fault immediately it occurs.

Processor Architecture

In order to understand the principles of
system operation it is necessary to describe
the architecture of the Processor . Reference
2 describes many of the hardware aspects of the
processor which are not described in detail here.

STORE

Co [BASE / TYPICAL
LimIT —~—-__§-_\~____~___ BLOCK
CAPABILITY
FOIHTER
o G —
CURRENT
CODE
BLOCK
0o MASK REGISTER
MODIFIER GENERAL
REGISTERS ACCUMULATORS
07

Fig 5 The working Register set

There are eight fifty bit (48 + 2 parity) general
purpose capability registers CO-C7. Conventionally
C7 is required to hold the currently executed code
block and C6 defines the Process Capability

pointer block, which in general defines the

working set of 'capabilities' available to the

code block in execution. . The remaining registers
COC5 are loaded by a standard instruction,

'Load Capability', under programmer direction.

There are eight twenty four bit data
registers DO-D7 all of which can be used as
accumulators, and seven of which can be used as
address modifiers. In addition to these two
sets of working register the hardware provides

further 'hidden' Data and Capability registers

required for efficient operation and these cover
timer registers, indicators, etc.

All memory addressing is performed by the
addition of a selected Base value of capability
register go an offset (derived from the
instruction). Before any store operation is
performed this final memory location is then
checked to be greater . .than the Base value,
since negative modification is possible, and
less than the Limit value. Similarly, the
micro-program action, Read or Write, is checked
to be permitted by the Access field of the
selected capability before the Store operation
is allowed to complete. Fault interrupts are
generated if any violation of the capability is
attempted.

Clearly the system places great reliance
upon the validity of the capability registers
and the data held by them. Therefore a
considerable number of checks are involved when
loading and using capability registers which

together ensure that no single hardware or softvare
failure can pass undetected by one or other of the
checking mechanisma. These mechanismg include a
twenty four bit sum check, parity checks and
register addressing checks.

Six basic capability manipulation instructions
are provided which permit the programmer to 'lLoad'
capability registers, 'Pass' capability blocks
from one procedure to another, 'Call' and 'Return’
from sub-routines, and 'Charging Process'. - In all
these cases, however, the Base, Limit, Adcess
Field values of the capabilities manipulated are
set by the operating system and not directly under
the programaers control.

! [}
RECISTER i STORE !

A PROCESS CAPARILITY TASLE o
(HELD 1K POSSIBLY 1% Cg)

A LOGICAL CAPABILTY —— o

"tayd° | OFFSET X —

— - ——

THE SYSTEM CAPASILITY TABLE
(HELD IN C¢)

Y

SUM CHECK
BASE
| LiniT

THE PHYSICAL CAPABILTY

%S | LiMIT

SELECTED CAPABILITY RECISTER
(Co— ¢C1)

Fig.6 The Load capability sequence

The selection of the Base, Limit and Access
Field is arranged via the System Capability
Table held in one of the 'hidden' capability
registers. Within this 'map' is described all
the currently available blocks referenced in
main store. Each user of the system, has a
get of 'capabilities'. Each capability specifies
an Access Field and the offset of one of the 3
word packets held in the 'map'. The Capability
manipulation instructions reference the
available 'capabilities', this in turn enables
the hardware to select and load the assigned
Base, Limit and Access Fields into the
Capability registers of the Processor. Thus
the logical capability is converted into a physical
address at run time.

It must be stressed that although the programmer
is at liberty to load into a register the assigned
Base and Limit values of any of his available

capabilities he cannot alter either the values
of his own set of logical capabilities, or the
corresponding physical Base and Limit values.
[his is effected by disallowing the WRITE DATA
facility on a capability block.

Therefdre at all times, the range of Memory
locations which can be accessed is limited to
the available 'capabilities' and the corresponding
Base Limit values held in the System Capability
Table.

Fault Detection and Recovery

In order to protect the working system from
progressive collapse due to the migration of
faults through the system, the Processor performs
a Fault Interrupt immediately the fault condition
is recognised, and before any actual capability
violation can occur. The Fault Interrupt
sequence is critical in order to preserve the
system security and therefore in understanding
the system recovery mechanism. The hardware
sequence is consequently described in some
depth, Reference 3 elaborates the system
philosophy, and recovery sequence ensuing after
a hardware fault.

The actions executed by the microprogram
are repeatable and subsequent fault indications
cause the sequence to be re-attempted.

FAULT ENTRY

\

1 NULLIFY ALL CAPABILITY
REGISTERS EXCEPT
START UP BLOCK

v

2 PRESERVE FAULT INDICATORS
v
3 INCREMENT START UP

AREA TO NEXT MOODULE

4 RELOAD SYSTEM CAPABILITY
TABLE FOR START UP SEQUENCE

v

5 “CHANGE PROCESS
TO

START UP PROCESS

Fig. 7 The Fault Interrupt Sequence

Firstly the currently loaded Base and Limit
values are corrupted to give invalid parity detection.
This ensures that even given incorrect sequencing
through the Fault Interrupt microprogram any attempts
to accees the memory locations of the previously
running Process are prevented.

Secondly the Fault Indicator register is stored
into a hidden register to preserve the fault
indication. The Fault Indicator register is them
cleared.

Thirdly, the Start H? Capability Register
C(S) is incremented by 2°° so that it now
references a different memory module. This ensures
that during multiple fault conditions the Processor
attempts to 'Start Up' from each of the available
store modules in turn until it succeeds.

Fourthly, the Capability Register referencing
the System Capability Table C(C) is reloaded with
a Sumcheck, Base and Limit value held as the first

three entries defined by the Start Up Capability
register C(S). The block thus loaded references
a new and limited set of Base and Limit values
available to the Start Up Process.

Finally
is attempted
fourth entry

the Change Process microsequence
using the Capability held as the
in C(S).

When each of these steps has been executed
successfully the Fault Interrupt Process is
activated. This Process will run with g limited

set of memcry locations available thus preventing
interference with other Fault Free Processors.

The pre-requisite of the Fault Interrupt
sequence is that at least one valid copy of the
start Up Block and the associated Program and Data
block exists in any one of the equipped Store
modules. Similarly if the Processor has a
hardware failure which prevents the successful
activation or completion of the Start up Process
the hardware is condemned to an eternal cycling of
the Fault sequence in an endless attempt to recover.

Note that the system recovery sequence which
follows a fault detection can be made as rigorous
as the application requires, Reference 3
discusses this in more detail.

On-Line Diagnostic Facilities

In order to achieve high reliability at
reasonable cost the Mean Time to Repair faulty
modules must be reduced to a minimum. In broad
terms this has two effects. Firstly, the
possibility of a second failure within the critical
part of the system during the 'down time' of the
first module is minimised, thus improving the
system reliability, or alternatively, for a fixed
reliability the number of redundant modules of any
one type is minimised thus reducing system cost.

SYSTEM 250's diagnostic software and maintenance
procedure is an integrated system which minimisges
the system repair time. The novel aspect of this
system is concerned with Processor diasgnostic
software.

Processor diagnostics are normally an
extension of functional test programs. They

‘are run on suspect machines in the hope that the

fault will not be serious enough to prevent the
successful completion of the test program. Out-
put is then produced which indicates the faulty
component. There are two hazards in this

approach, the first is that the fault could reside
in the 'hard core' of the machine and either prevent
the successful output of any message, or faulty
output may be obtained, second, the processor,
although suspect, requires the use of system
resources in order to run and output any message.

For System 250 this is unacceptable for two
crucial reasons. Firstly, the whole nature of
the design is oriented towards a 'hard core'
whichincludes the whole machine, it is in this
way that faults are indicated immediately.
Secondly, faulty processors are trapped in the
fault recovery sequence deliberately so that
they cannot make use of systems resources.

However, as a consequence of System 250's
multiprocessor philosophy, it has been arranged

" that the diagnostic routines run on a working

processor which then interrogates the suspect
machine.

I

‘PERIPHERAL
OE ¥ICE

PERIPHERAL

STORE DEVICE

STORE

—

PROCESSOR PROCESSOR

] -]
\——-—.—A IHE DIAGHOSTIC INTERFACE

Figl The connections of the Processcr Diagnostic Interface

L]

Each Processor module has an optional
'Diagnostic Interface'. This interface is
exactly the same in operation as the Store and
Peripheral Interfaces connected to the Store
Bus. Each Processor can therefore be connected
to the Test Interface of one of the other
machines in the System, either directly or via a
Multiplexor. The internal logic of each processor
is therefore addressed as memory locations.. The
appropriate 'Capabilities' must be loaded into
the hardware registers of the interrogating
processor in order to address the suspect machine.

A set of Commands are provided as part
of the Diagnostic Interface which facilitate
the operation of certain essential functions.

STOP MAIN PROCESSOR CLOCK

START MAIN PROCESSOR CLOCK

PERFORM SINGLE SLOT WORKING

PERFORM SINGLE INSTRUCTION WORKING
REPEAT A PARTICULAR INSTRUCTION

STOP AT A PARTICULAR INSTRUCTION ADORESS
STOP AFTER “n" SLOTS

STOP AT A PARTICULAR MICROPROGRAM SLOT
STOP AT A FAULT CONDITION

MONITOR MICROPROGRAM CONTROL SIGNALS
FORCE MICROPROGRAM CONTROL SIGNALS
MONITOR INTERNAL REGISTERS

FORCE INTERNAL REGISTERS

Fig.¢ The Diagnostic Interface Commands

In the simplest terms the registers can be

loaded with a known pattern, clocking functions
can be performed and the register can be

examined and compared with a known result.
Discrepancies are isolated to single paths and
the results indicate far greater fault resolution
than is possible by traditional methods.

The diagncstic package will provide fault
analysis down to one board (or a small number
of boards when, for example, 'wire-or' functions
are faulty). ’

Conclusions

Each characteristic of SYSTEM 250 was
conceived to satisfy one or more of the design
requirements detailed at the start of this
paper.)

A SYSTEM 250 CHARACTERISTIC THE REQUIREMENT

CAPABILITY PROTECTION

MODULARITY REDUNDANCY

MULTIPROCESSOR TRARFIC SHARING >_co:gg:’t.lucr; OF

FAULT DETECTION AND RECOVERY

ON-LINE DIAGNOSTICS)

STANDARD HARDWARE INTERFACES]

STANDARD SOFTWARE INTERFACES EASE OF

MODULARITY L_EXPANSION,ABILITY
TO EVOLVE,

MULTIPROCESSOR FLEXABILITY

DATA COLLECTION AND OiSTRIBUTION J g POWER/COST
RATIO

CAPABILITY PROTECTION SYSTEM

STANDARD HARDWARE INTERFACES

PARTITIONING &
STANDARD SOFTWARE INTERFACES URITY

Fig10 The System Characteristics

While not exhaustive, it is hoped that
this paper, in conjunction with the others
presented by my colleagues, has indicated the
principles of operation of SYSTEM 250, its
architecture, and its power.

References

1. D.C. Cosserat = 'A Capability Oriented Multi-
Processor System for Real-Time Application'
presented at this Conference.

2. D. Halton - 'Hardware of SYSTEM 250 for
Communication Control’ Proceedings of the

International Switching Conference, Boston, Mass.
June 1972.

3. C.S. Repton - 'Reliability Assurance for
SYSTEM 250 a reliable, Real-Time Control System'
presented at this Conference.

Acknowl edgement

I would like to thank the many colleagues on
whose work this paper is based and the Directors
of the Plessey Company for permission to publish
it.

RELIABILITY ASSURANCE FOR SYSTEM 250
A RELIABLE, REAL-TIME CONTROL SYSTEM

C. S. Repton

Plessey Co. Ltd.

Liverpool,

Summarz

System 250 is a multi-processor system designed
for real-time communication applications where very
reliable operation is required. The initial appli~-
cation of this system (control of a telephone ex-
change) is required to achieve a mean time between
failure of 50 years, where a failure is defined as
a system outage lasting over ten minutes.

The paper describes in a general way the
problems involved in providing this degree cf
reliability, and some solutions which can be adopted.
The approach which is being used in the design of
System 250 is described.

Particular emphasis is placed on the initial
stages of recovery which ensure that a fault-free
system configuration is set up and that a basic
minimum set of programs are correctly loaded and
working, allowing the system to bootstrap its way
back into full operation. The hardware and software
mechanisms used to achieve this basic level of
recovery are described in some detail, and the
methods used to secure these mechanisms themselves
against the effect of fault conditions are also
congidered.

Introduction

The application of computer systems to real-
time control situations is rapidly expanding.
Many of these applications, such as air traffic
control and communication systems, are essentially
continuous activities which demand very reliable
control systems. This means that the design of
highly reliable computer systems is becoming in-
creasingly important. This paper describes the
methods used to secure a real-time, multi-processor
system (System 250) against failure and discusses
some of the problems involved in providing reliable
system operation.

System 250 has been designed for communication
applications, such as control of telephone
switching, where continuous, reliable operation is
required. A typical requirement of this type of
application is a mean time between system failure
of S50 years, where a system failure is defined as
an outage lasting over ten minutee.

Previous papersl‘2 have outlined the overall
configuration of System 250. The main features
are that the system uses a group of functionally
identical processor units connected toc a group of
identical store units. This type of configuration
can be made to perform like one large, very powerful
computer, and yet its power can be economically
increased in small steps simply by adding more
processor or storage units.

England

Since all units are functionally identical any store
module can replace any other store module, and
similarly any processor unit can replace any other
processor. This means that equipment failures

can be catered for fairly simply. In the event

of a unit failure the faulty unit is isolated and
the functions of that unit are then reallocated to

~other modules in the system which have some spare

capacity.

The software which is used to control this
hardware configuration can usefully be cgnsidered
as a number of distinct layers or levels~, As
each new layer of software is added to the system
it is used to extend, or present in a more con-
venient form, the facilities which are available.
In effect the first layer takes the bare facilities
provided by the machine instruction set and adds
to them by providing further facilities within
the software. This provides subsequent levels in
the hierarchy with an enhanced version of the
original machine, a kind of 'virtual machine'.

The additional levels use this extended machine to
produce further, more powerful facilities. Thus

as one progresses along the hierarchy the facilities
provided by the virtual machine at each level be-
come increasingly useful and powerful.

In the case of System 250 the first software
level takes the multi-processor, multi-store
system and converts it into a virtual machine which
appears to subsequent levels to be one large, very
fast processor with one large store. All the
problems assoc’ated with multiple processor op-
eration are handled at this initial level, and
subsequent layers need not consider the multi-
processor nature of the system. The next level
in the hierarchy provides convenient input/output
facilities and controls the backing store devices
such as discs, so that lower layers see a very
much larger stere system than that provided by
the main store alone. The next level provides
operator communication and facilities such as
program assembly, editing, job comntrol etc.
Finally on the last level come the application
programs which actually perform the real-time
operations (Fig. 1).

[BASIC SUPERVISOR J

[INPUT/OUTPUT AND IM'INOG‘!TORE 'ACILIT!C&J

[JO‘ CONTROL. PROGIAM ASSEMBLY, OPECRATOR COMMUNICATIONS (TCJ

5

APPLICATION APPLICATION

i 2

ll APPLICATION
3

Fig. 1
Software Structure of System 250

There may be several sets of application
programs in a system such as this. For example,
one central control system may control several
remote telephone exchanges. Other functions may
be required which are related to, but not part of,
the main real-time activity. For example, a
maintenance sub-system to allow on~line testing
may be added or a program development sub-system
to allow new programs to be developed and debugged
before being introduced into the real-time system.

Recovery Mechanisms

Based on this broad description of System 250
let us now consider the type of facilities and
mechanisms which will have to be built into the
system to allow it to recover automatically from
fault situations.

Obviously the system will have to cope with
failures within individual processor units and
store modules, so that we require some means of
detecting that a fault has occurred and locating
the fault to a particular module. The faulty
module can then be isolated so that it cannot
interfere with the rest of the system. Finally
any data which may have been lost or corrupted
by the fault must be restored so that normal
operation can continue. Typically this will
involve reloading lost programs and data in the
event of a store fault, and abandoning or re-
constituting suspect data after a processor
failure.

The system will also have to deal with software

- faults. On the basis of past experience it seems
inevitable that even after thorough testing and
commissioning all but the smallest system will
still contain design errors in the software.
This means that the system will occasionally
behave unpredictably when certain, rather rare,
combinations of data or timing circumstances
occur., All that is required in this case is to
reset any data which has been affected by the
failure and restart processing using fresh data.
This type of data recovery mechanism is similar
to that required to deal with the after-effect
of processor failures, as described above.

Thus, in general, each recovery action includes

three distinct phases:- The first is the
detection that an error has occurred. The second
is an attempt to locate the fault to a particular
hardware unit. This may not succeed, either
because insufficient information is available, or
because the fault is caused by a software problem.
Finally the third phase will involve some form of
data recovery or restart procedure which will
allow the system to resume normal processing.

Within System 250 the mechanisms used at
each stage of recovery are as follows:-

The error detection mechanisms which are used
are:-

(1) fault detection circuits built into the
hardware.

(2) software consistency checks and time-outs to
monitor overall system performance.

(3) test routines run in background mode.

The methods uged to locate the fault to a
particular unit are:

(1) Persistent fault conditions reported by
check circuits. :

(2) If the error detection mechanism implicates
a particular unit or units (for example hardware
check circuits or test routines) a fault ccunt
associated with the unit or units can be in-
cremented in order to detect persistently failing
devices.

(3) A localised test procedure can be used to
test units which are suspect as the result of
an error indication from a hardware check
circuit or failed test routine.

(4) The testing sequence can be extended to cover
ali units within the control system.

(5) s a last resort units can be switched out
of system on a trial basis in an attempt to find
a viable system configuration.

There is obviously a very wide range of data
recovery and restart procedures which can be
adopted. We have found it useful to adopt three
stages of recovery action which provide
progressively more exteneive restart facilities.
These are:-

(1) Process Restart Each process, or
transaction,in the system has a defined recovery
action which can be activated if that process
meets any form of error condition. The recovery
action invelved will vary depending on the nature
of the transaction, and these can range from
regenerating data areas, and restarting the
failed process in the case of a vital system
function, such as a disc handler, te simply
ending the failed process and printing
diagnostics.

(2) Area Restart Each functional area within
the system has a defined recovery action which
will allow read/write data to be regenerated

from duplicate files held on disc by that area.
This may allow complete data regeneration, but
more usually, some transactions will be abandoned
and only the most important functions will be
made restartable by storing redundant information
on disc. This type of restart is commonly
referred to as a 'warm start’.

(3) Area Reload Each functional area also

has a defined recovery action which will allow
processing to be restarted from read-only
information in duplicate, sum-checked files

held on write~protected areas of the backing

store. This form of recovery obviously involves
abandoning all current transactions, reinitialising
the system and then resuming processing new

transactions. This type of restart is commonly .
known as a 'cold start'.

Recovery Procedures

We have now considered the basic elements
which are available for use in constructing
the required recovery procedures. Before
moving on to discuss the form taken by these
recovery procedures it is worth making the
following observations:-

(1) the hardware test and data recovery pro-
cedures involved can themselves disrupt system
operation, for example it is difficult to perform
a complete test on every hardware unit in the
system without causing some disturbanceto ncrmal
on-line processing, and the various data recovery
procedures often abandon perfectly valid trans-
actions rather than attempt a complex validity
checking operation.

(2) the error indications do not always pin-

point the source of the fault or the identity

of the corrupt data. Processors may trigger
hardware check circuits as the result of

attempting to process invalid data corrupted by
faults elsewhere in the system, and it is impossible
to predict just how much data may have been dis-
turbed by any given software fault. :

This means that it is very difficult to adjust
the recovery action so that the fault is
corrected and yet the disturbance to system
operation is minimised.

In the circumstances the best strategy is to
combine the various fault location and data
recovery/restart procedures into a sequence of
recovery actions. Initially the action which
caugses least disruption to system operation is
used. If this fails to clear the fault, as
indicated by further error reports, then in-
creasingly powerful (and hence more disruptive)
reccvery actions are used until the fault is
cleared, as indicated by the absence of further
error indications.

The sequence of actions which has been
adopted in System 250 is sghown in Fig. 2.
Error indications which do imply the location of
a fault (hardware check circuits and failed test
routines) cause a fault count to be incremented
for the unit, or units involved. If one unit is
consistently implicated then the fault count in-
dicates this. A local testing procedure for the
suspect units is also activated. If either of
these mechanisuws detect a consistent fault the
system is reconfigured to isolate the faulty unit.
In the case of a hardware check circuit indication
it is also necessary to restart the process
which was running at the time of failure as the
data associated with this transaction is now
suspect. Repetitive errors detected by hardware
check circuits within a short time interval
guggest that the fault may be due to a software
problem within the failing area rather than a
hardwere fault. Therefore in this case the

HAROWARE CHECK
CiRCUIYS TEST ROUTINGS SOFTWARE CHECKS

LOCAL TEST. $
LOCAL TEST.
"fg:o:‘“,w"x;‘”w”" CHECK FAULT COUMTS. RESTART AREA
! RECONFIGURE \F REPORTING ERRORS

RESTART FAKLD FROCESS FRCEISARY.

LOCAL TEST.
CHECK FAULY COUNTS,
RECONRIGUNE IF
RECESSARY.
RESTART FAILED AREA

GENERAL SYSYEM TEST
RECONFIGURE IF
NECRSBARY
GENERAL. RESTARY

GENERAL SYSTEM TEST
RECONFIGURE IF
HICESSARY
GENIRAL RELOAD

GENERAL SYSTEM TESY
TRIAL RECORFIGURATION
GENERAL RELOAD

Fig. 2
Sequence of Recovery actions used by Sygtem 250

recovery action is extended to cover the failing
area rather than just the process involved.

Faults detected by software checks cause a re-
start of the functional area detecting the fault.,
If the error is due to a software problem within
that area this should clear the fault.

Further repeated error indications of any
kind cause a general system test to be performed
which thoroughly tests all control system elements.
Any faultyunits are isolated and the system is re-
started by means of an Area Restart applied to all
functional areas. This procedure will eliminate
any data corruption in main store and will recove:
the vast majority of all solid hardware faults.,

If further error indications are generated
then another general system test is initiated in
the hope of detecting possible intermittent
hardware faults. Any faulty units are isolated
and the system is reloaded by means of an Area Re-
load applied to all functional areas. This will
reload the system using duplicate read-only files
from backing store. This eliminates any
possibility that further system failures can be
caused by corrupted data generated by an earlier
fault,

. After this stage the only faults which can re-
main undetected are intermittent hardware faults or
solid faults not detected by the test routines.
Therefore, as a last resort, subsequent fault
reports initiate another general system test in a
further attempt to detect intermittent failures.

If no new faults are found one of the units is

switched out on a trial basis (trial reconfiguration)

The system is then reloaded by applying an Area
Reload to all functional areas. Repetitive appli-
cation of this procedure will eventually
eliminate faulty units which remain undetected by
the test routines.

Overall Structure of the Security System

The previous section discussed the sequence
of actions which should be followed when an ervor
is detected within the central control system.
The group of programs concerned with controlling
this sequence are referred to as the basic
recovery system, and form an additional layer in
the software hierarchy (Fig. 3).

BASIC RECOVERY SYSTEM !
BASIC SUPERVISOR
INPUT/OUTBUT AND BACKING STORE FACILITIES
JOB CONTROL, ASSEMBLY, CHIRATOR COMMUNICATIONS
AR
APPLICATION B A»ucrmon E APPLICATION n ere

3

Fig. 3
Software Structure showing Basic Recovery System

When discussing the functions provided by the
various levels in the hierarchy it was showmn how
the basic supervisor, which contains the
scheduling and store allocations routines,
effectively concealed the multi-processor, multi-
store nature of the system from the lower levels.
Programs involved in lower levels could be written
on the assumption that they would run on one large
processor with one large store. The basic
recovery system performs a similar function in
that processor and store failures are dealt with
at this level, and lower levelsin the hierarchy
do not needito be concerned with the possibility
of hardware failures. They can be written on the
assumption that they are always held in a fault-
free store module, and are obeyed by a fault-free
processor. Thus although several copies of the
basic recovery procedures must be available to
protect this level against store failures,
programs on lower levels do not need to be dupli-
cated. If a store module fails, the programs
held in that module will be reloaded into a new
module by the basic recovery system. Therefore,
placing the basic recovery system at the highest
level in the hierarchy reduces to a minimum the
amount of program which must be replicated. It
also simplifies the system since lower levels do

not need to consider the possibijlity of hardware
faults.

The software checks required to provide an
error detection mechanism should be distributed
throughout the system so that each level contains
its own independent set of checks. Similarly it
is convenient to provide data recovery and restart
procedures on a per level basis. This means that
each level becomes an independent functional

Reports of Software T

. — -1 R«ucni for Hestart
Betected Errore 1 BASIC RECOVERY SYSTEM r

Actions

b

——% BASIC SUPERVISOR @—4——‘

—‘-———% INPUT/OUTPUT AND BACKING STORE FACILITIES N—d——;
A

—4——-&2 JOB CONTROL. ASSEMBLY. OPERATOR COMMUNICATIONS E§-—<——

e

APPLICATION
'

APPLICATION
2

L

/ APPLICATION
'-‘/

3

AL
NN

NN

/)?%Z

»7/;//1

? Software Error

Dote Recovery cnd \\
4 Checking Routines

Restort Procedures §

Fig. &
Software structure showing Basic Recovery System

& Cowvmunication Paths to the Rest of the Systenm
area, with its own set of software checks, and
its own restart procedures.

The software checks report any
errors to the basic recovery system which can
then initiate the appropriate recovery action,
vhich may involve invoking restart procedures
provided by the lower levels. This modified
hierarchical diagram is shown in Fig. 4.

This type of system structure means that as
one progresses down the hierarchy not only do
the number of facilities available increase, but
it is also possible to make wider assumptions
about the state of health of the system. Below
the basic recovery system programs may be written
on the assumption that all hardware faults have
been eliminated from the system. The only
responsibility that these lower levels have with
respect to system reliability is to maintain an
overall measure of performance through the soft-
ware checks on that level, to report consistent
faults to the basic recovery system on the
assumption that the degradation is due to some
form of system fault, and to provide the standard
recovery procedures. Below the level of the
basic supervisor it may also be assumed that
reliable store allocation, and scheduling facili-
ties are available, since it is the rasponsibility
of the software checks and restart procedures
within the basic supervisor to ensure this.
Below the input/output level it may also be
assumed that reliable system peripherals are
available, and, for example, an application
program written to test a particular piece of
application hardware can ignore possible side
effects due to faults on the input/output channels.
It is the responsibility of the input/output
routines within the operating system to eliminate-
these faults. This expanding level of confidence
continues right down to the application/operating
system interface where it may be assumed that
processors, stores, input/output c'annels and
system peripherals are working correctly and that
the full range of operating system facilities

is available. Of course, it is the responsibility
of the application programs to cover the effects
of faults in any special peripherals controlled
wvholly by that application.

Thus the overall reliability of the system is
based on a hierarchy of guarantees. At the top of
the hierarchy the basic recovery system provides
fault~free stores and processors. Working from this
base the other levels can then guarantee fault-free
input/output devices and operating facilities to
the application programs. By using this wider
base the application programs can now secure their
own specialised peripherals against failure. In
many ways this hierarchy of guarantees parallels the
functional build-up of the system, which is based
on using the facilities provided by higher levels
to make extensive or sophisticated facilities
available to lower levels.

Securinn the Security System

In the scheme outlined above everything
depends on the ability of the basic recovery
system to guarantee fault-free processors and
stores to the lower levels. One of the main
problems involved in producing a workable security
system is to ensure that the basic recovery system
itself is not disabled by fault conditions.
Obviously several copies of these recovery programs
must be provided in seperate store modules to protect
them against store failure, and some form of
protection must be provided to prevent these multiple
copies being overwritten by a faulty processor.
The recovery programs must also be accessible to
several processor modules, to cover processor
failures.

These requirements could be most easily met
by noninating some, or all, of the processors as
'fault handling' units and providing each with a
private store module containing a copy of the
recovery programs, Fig. 5. In the event of a
store or processor failure one, at most, of the
store/processor pairs would be disabled and unable
to take effective action. The other processors
would then be able to clear the fault and recovery
system operation.

COMMON | COMMONM COMMON COMMON
sToRre STORE STORE 2 STORE)
PROCESSOR PROCE SIOR PROCESIORS
l 2
N RECOVERT N n(cov:a PRIVATE
nogrm:sQ BOUTINES \ STORES
INEIRN ““°“°Q
PROCESSORN Fprocesson
A NN
Fig. 5

System Diagram illustrating 'Store per fault-
handling processor' approach

As each of the store modules containing the recover
programs would be accessible to one processor only,
this would protect the recovery programs from
faults in other processors.

However, this method does have considerable
disadvantages. Because each of the fault
handling processors accesses a particular copy
of the recovery programs when a fault is detected
it is difficult to prevent faults in the store
agsociated with these programs also disabling
the processor. This effect considerably
reduces the mean time to failure of the processors,
In addition this scheme can involve a considerable
cost penalty, particularly in large systems,
because a store module per 'fault hardling'
precessor is required for the recovery programs.

In contrast System 250 allows any processor
access to all copies of the recovery programs
(see Fig. 6). This means that:-

(1) failure of a store containing a copy of
the recovery programs does not also disable a
processor.

(2) it is only necessary to provide sufficient

copies of the recovery programs to protect the
system against simultaneous store failures.

FIRST COPY OF SECOND COPY OF

/IEMRV zyﬂtcovtﬂv ROUTINES

A Z)

COMMON COMMON COMMON COMMON
STORE STORE 2 STORE 3 STORE 4
PROCESSOR PROCESSOR
' 2

System diagram illustrat€%§'8§stem 250 Approach
to Fault Handling

This arrangement is made possible by two
features of the processor hardware:-

(1) the capability mechanisp, which was
described in a previous paper , provides a very
secure store protection facility, and protects
the recovery programs against the possibility

of being over-written in the event of a hardware
or software fault.

(2) the fault interrupt mechanism, also
described in a prevxous paper , which together
with the test program in the first section of
the recovery programs, is used to control access
to the recovery programs.

To illustrate this scheme assume, for the
moment, that the only form of entry to the recovery

programs is via a fault interrupt. This mey be
an involuntary interrupt resulting from an attempt
to perform some illegal operation, or it may be

¢ deliberate attempt to invoke the recovery
mechanism beceuse some error condition has been
detected by the softvare. On taking a fault
interrupt the PP250 hardware first disables all
the current capabilities held in the machine, thus
preventing further access to store. It then
attexpts to relcad a new set of capabilities from
a pre~designeted location in store. If this is
completed successfully the resulting capabilities
are used to access the first part of the recovery
program. This is a test program which is
arranged as a maze. The only possible exit from
this meze is via & further capability which is
created bit by bit as the machine proceeds through
a geries of teste. These tests are designed to
completely check the hardwvere and the 'resd only'
blocks (progrems and dats) associated with the
recovery progréanm. If an error is detected at

any ctage then another fault interrupt is forced.
This ceuses the processor to reattempt the csapabili-
ty load from the next available store module (see
Fig. 7).

SALECY BAXT
coey

N

i

KOMAAL ON-LINE
PROCESUING

Gutected

Fig. 7
Security System using fault interrupt mechanism
& Replicated Recovery programs

This mechanism provides a dual function.
First it ensures that a faulty processor is
constrained to endlessly cycle through the
storage system in an attempt to find & test
program which it can obey successfully. The
only capabilities available to the faulty
machine at this time are associated with the test
program, so that it is unable to interfere in any
way with the operation of the on-line system.
Secondly it allows fault-free processom to search
through the storage system to find an uncorrupted
version of the recovery programs.

The mechanism described above, although
considerably better than the 'copy per processor'
method, does have some disadvantages. The first
is that before any recovery action can be taken
the processor involved must obey a lengthy (17—
200 msec) test program. The second is that all
the recovery programs must be replicated. Both
‘of these precautions are unnecessary in some fault
situations where the fault is unlikely to disable
the on-line system in any way, and the recovery
acticn is fairly simple. For example, software
faults which corrupt data within application

programs are unliikely to affect the nmormal running
of other programs. Once the fault condition ig
detected it is only necessary to activate the data
recovery/restart routines for the particular
application to recover system operation.

This rather minor kind of fault can be dealt
with quite adequately by programs which exist in the
on-line system and run in the normal way. However
these programs do need some form of protection so
that if they themselves are disabled by the fault,
or are unable to cope with the fault situation in
some other way, then the more powerful, replicated
programs can be activated. Thus some form of
monitor mechanism which can detect the failure
of these unreplicated programs is required, as
shown in Fig. 8.

= —®==—-{uoniTOR

b e -

UNREPLICATED
ro-{ RECOVERY
FROGRAMS

IREPLICATED
RECOVERY
FROGRAMS

NORMAL ON-LINE
PROCESSING

errors
éetected

foutt
imerrept

Fig. 8
Security System using a combination of replicated

& unreplicated recovery programs

In the proposed implementation of System 250
the monitoring mechanism is made an implicit
part of the unreplicated recovery programs.
Thege recovery programs are activated by a
process called the 'System Monitor'. This
process runs at regular intervals and scans ?h?
system fault indicators. If any fault condxtfon
is detected then the appropriate recovery routine
is activated. If persistent or multiple error
conditions are detected then this implies that
the fault is beyond the scope of the simple,
unprotected, recovery programs, which are only
intended to cope with relatively minor faults.
In these cases System Monitor will force a fault
interrupt, thus activating the second line of .
defence, the replicated recovery programs. This
is illustrated in Fig. 9.

Of course it is important to protect’the
system against the possibility of the failure of
this monitoring action. This can only happen in
one of three ways:—

(1) the monitor can feil ‘gane', detect that
all is not well and force a fault interrupt.

(2) the monitor can fail 'dead', so that
either it does not run at all, or d?es not
perform any meaningful action when it does run.

(3) the monitor can fail 'crazy' so that it app-
arently runs correctly at regular intervals and
yet does not respond to fault conditions.

SELECT
SYSTEM | persistem £t
MONITOR towit corv
[y
'.Y‘
feuit y
UNREBLICATED REPLICATIO! | b ructaer
RECOVERY RECOVERY | w;hewﬂo
PROGRAMS PROGRAMS
&rrors NORMAL ON-LINE
detecied PROCESSING
ot regular j7 { feuit
intervais feterrugt
Fig. 9

Basic Structure of System 250 Security System

If the monitor fails 'sane' then the
replicated recovery system is activated
explicity by the monitor, and it can teke
effective action to recovery system operation.
If the monitor fails 'dead' then an independent
time-out mechanism is used to force a fault
interrupt. This is equivalent to a periodic
'OK' signal which is used to reset a time-out,
thus indicating that the system is operating
correctly.

There remains the possibility that the
monotor can fail 'crazy'. The probability of
this happening can be reduced to any arbitrary
level by incorporating sufficient self-checks
into System Monitor, and ensuring that
sufficient overlapping, independent software
checks exist in the on-line system.

In general it is relatively easy to ensure
that if the system fails then eventually. some-
where, one of the processors will generate a
fault interrupt, thus activiating the replicated
recovery programs.

There is one final modification which can
usefully be made to the system illustrated in
Fig. 9. It is fairly easy to ensure that
even under the worst possible fault conditions
at least one processor will generate a fault
interrupt at some stage. Therefore the fault
interrupt mechanism is used to ensure that the
replicated recovery programs, and the associated
powerful recovery actions, are activated when a
major system collapse does occur. However, an
isolated fault interrupt is symptomatic of
nothing worse than a transient hardware
fault, or simple software error. Ideally
these should be dealt with by the unprotected
programs, using recovery actions which cause
minimum disruption to system operation.

Only repetitive or multiple fault interrupts

should drive the system into the rather more drastic
recovery measures adopted within the replicated
recovery programs.

This feature can be incorporated fairly easily,
After a processor has successfully completed the
test program which forms the first part of the
replicated programs, it places a message in a
location which is scanned &t regular intervals by
System Monitor. When this megsage is detected,
the other error indicatione are checked together
with a fault count for the processor which gener-
ated the message. Provided that this is an
isolated occurrence the monitor process passes
capabilities to the faulted proessor which allows
itto rejoin the on-line system. If this particular
processor has suffered a succession of fault in-
terrupts it is assumed that it either has an inter-
mittent fault, or a solid fsult which is not
detected by the test program. In either case it
is not passed the capabilities which allow it to
rejoin the on-line system but is forced back into
the test program.

If System Monitor does not respond to the
message then the assumption is made that either
System Monitor has failed or that multiple error
conditions have occurred. In this case the
processor accesses the replicated recovery
programs (Fig. 10).

INITIAL RECOVERY SSCONCARY RECOVERY

pertigieat
euit

seL?
TELY
QOUTING

SYSTEM

o3
baonITOREY
~

oun
o et

eunt

e e

-7
rr7
I//
'/

UNRIPLICATED
RECOVERY
PROGRAMS

REPLICATED
RECOVERY
PROGRAMS

NORMAL ON-LINE

errocs énected

PROCESSING
at_regular j { 1eu!t
wiervale intertupt
Fig. 10

Detailed Structure of System 250 Security System

Thus the general scheme is that in sddition_
to the replicated programs which provide the'baslc
level of recovery another group of programs 18
provided which run in the normal way as part of

the basic supervisor. These programs form the
first line of defence and provide a number of

simple recovery actions which do not greatly
disturb system operation. The general hierarchical
structure shown in Fig. 3 is therefore extended by

splitting the basic recovery system into two sections

(Secondary Recovery and Initial Recovery).
the essential kernal of this recovery system
(Secondary Recovery) is replicated, and the rest
(Initial Recovery) forms part of the basic
supervisor (Fig. 11).

l SECONDARY ascovtavgga

|INI1’|AL HECOVERY AND 843IC SUPERV!SOi]

Only

INPUT/OUTPUT AMD BACKING STORE FACILITI!Sl

I JOS CONTROL, ASSEMBLY. OPERATOR COMMUHICATIONS l

ETC.

APPLICATION APPLICATION l APPLICATION
] 2 3

Fig. 11
General Operation of the Basic
Recovery System

. So far we have discussed the sequence of
actions to be taken under fault conditions, and
the overall structure of the basic recovery
system. Fig. 12 illustrates how these two are
combined . Briefly, Initial Recovery which
receives the initial error indications, is used
to implement all the recovery actions which do
not involve a complete system restart. The
replicated programs of Secondary Recovery are
used to provide the recovery actions which
involve a complete system test and general
restart.

To -illustrate how this system reacts to the
various kinds of failure which can occur it is
useful to consider some specific examples.

First consider a software fault in one of the
application areas. Typically, this type of
fault causes programs to behave unpredictably when
presented with certain, rather rare, combinat%ons
of data or timing circumstances. The error is
detected either by the software checks within the
application itself, or by hardware check circuits
whea the program involved attempts an illegal
operation, such as writing into a read-only block.

If the error is detected by software then the
response cf the basic recovery system is to force
a restart of the failed area. This action
reconstructs data held in store and restarts
processing new transactions, which is generally
sufficient to clear the fault.

If the error is detected by hardware then,
"after various hardware test procedures, the
particular transaction involved is restarted.
This may be sufficient to clear the fault, but
if it is not then subsequent faults will force
an area restart.

In very rare circumstances the area restart
may fail to clear the fault. This can only
happen if the duplicate information held on
backing store, which is used to reconstruct
essential read write data, has been consistently
corrupted in such a way as to cause further
failures when it is used .as part of the restart
procedure. This type of fault is cleared by a
subsequent recovery action in the sequence which
involves a complete system reload, thus clearing
any read/write data which has been generated by
previous system operations.

Software faults in the operating system area,
the basic supervisor for example, are dealt with
in a similar way. However in this case the
initial response to the error is more severe since
an area restart involving any of the levels in
the operating system will also imply a restart
of all the application areas, rather than just
the single application area involved as in the
previous example,

Transient faults in processom or store modules
have the effect or corrupting data, without
permanently disabling a hardware unit, so that the
immediate after-effects are indistinguishable from
software faults. Thus the remark 8 made above also
apply to this type of failure mode.

Consider the possibility of a proceassor fault,
Recent trials on the system indicate that faulty
processors usually take a fault interrupt very
quickly after the incidence of a fault, within one
or two milliseconds. Also recent tests have shown
that the 'fault capture' level of the test program,
which is obeyed by a processor after taking a
fault interrupt, is very good, better than 99.5Z.
Thus the vast majority of processor faults will
very quickly cause the faulty machine to take a
fault interrupt. It is then trapped in the maze
of the test program, which isolates it from the
rest of the on-line system.

- In general store faults will have an obvious
ard immediate effect on the system. Usually all
the processors receive a parity fault indication
very soon after the fault has occurred. This
effectively disables the on-line system so that
recovery is achieved through Secondary Recovery via
a general test of the system and a complete warm
start.

Hardware faults which are not located by the
test routines, either because they are inter-
mittent or beause the tes: routines are not com-
prehensive enough, are difficult to recover.

They may be located by means of fault counts, or

in the case of intermittant faults by repetitive
use of the hardware test programs. However if
none of these mechanisms do locate the fault then
the final, last ditch, action taken by the recovery
system is to attempt to find a viable configuration
by means of trial recongiguration. How quickly
this is achieved depends on the nature of the fault.
If the fault is seriously affecting system op-
eration, so that its effects can be detected very -
earily, then a medium sized system can work through
all possible combinations of the central control

equipment in something like two minutes. If Acknowl edgement
the fault only causes the failure of the

occasional transaction then the system is I would like to thank the many colleagues on
performing useful work. Provided the reduced whose work this paper is based and the
performance is acceptable then the automatic Directors of the Plessey Company for permission
recovery mechanisms will not be activated at all, to publish it.

since the system is, to all intents and purposes,
operating satisfactorily. - This type of non-
urgent fault will eventually be cleared by the
maintenance engineers, who receive information
regarding all error indications recorded.

References

1. K. Hamer-Hodges 'Fault Resistance and
Recovery within System 250' - Presented at
this conference.

2. D. C. Cosserat 'A Capability Oriented
Multi-Processor System for Real-Time
Applications' - Presented at this Conference.

3. E. Djikstra 'The Structure of 'THE'
Multi-programming System" Com. A.C.M.,
Vol. 11, No. 5 May, 1968, pp. 341 - 346

SECONDARY RECOVERY

INITIAL RECOVERY
> > ¥

PUNS WU

Y A ::::"m"‘ SELF-TEST | further
:] RoUTINE [Tfauits
ne faulit SYSTEM
- MOHITOR | * 0.k A
) single . ! _ slleved SET MESSAGE § .o mission =
feuit : | te rejein RZASVPIO'ITSE refused
A
| ‘{ ne respease z
>
FAULT COKTROL | FAULT COWTROL 35
- - — — 1 N T - - - = = = - - - - 97 - — — - - — - -
FAULT ,PERSISTENT FAULT | FAILED TEST " PERSISTENT FaT | SUBSEQUENT | SUBSEQUENT | SUSSEQUENT ?'.‘:‘E
INTERRUPT [INTERRUPY | ROUTIKE OETECTED 8Y YW FAULY 1 N FAULT 2 N FAULT 3 gv\
| - <
y Y Y Y ' Y Y Y -
[| A
POCAL HAADRGRE LOCAL KARDIARE REPEAT FAILED CENERAL CERERAL CEHRERAL
TEST . TEST . TEST . REJOLK | SYSTEM SYSTEM SYSTEM
CHECK FAULT CRECK FAULTY CHECK FAULT ON- LINE | TEST. TEST. TEST.
COUNTS COUHTS COUNTS
RECOKFIGURE RECOMFICURE RECCHFIGUAE SYSTEM | RECOMFIGUAE RECOMFIGUAE TRIAL
IF KECESSARY IF RECESSARY IF HECESSARY IF NECESSARY IF RECESSARY RECONFIGURE
')
v
-
---—-———---———-4-—--——-—--_—--——-1——-.--—--—-——4—-—\—-‘§
1] ¥ \ v Y ¥ y ot
<
RESTART RESTART RESTART GENERAL CENERAL GENERAL “g
A Y FAILED FAILED FAILED . >8’.
PROCESS AREA AREA RESTART RELOAD RELOAD ==
: ot
.- [A IS R . paE
Y Y Y Y
A

Aw:hun fevit
Tdatected by Wware

et reguler Y Y fault

NORMAL OM - LINE PROCESSING

intervals iaterrupt

Fig. 12

Implementation of System 250 Security System

SIKUCTURE AND INTERNAL COMMUNICATIONS OF A TELEPHONE CONTROL SYSTEM

J. Crompton

Plessey Co. Ltd.
Liverpool, England.

Summary

Current plans for the introduction of
computer controlled telephone exchanges to
Great Britain envisage the formation of a new
telephone network which will interwork with the
current network and ultimately replace it. The
basic module of the new network is a Switching
Unit, which is controlled by a Processing
Utility. Switching Units are composed of a
number of subsystems, and each subsystem is
subject to standard definitions both for its
interfaces and for the function it performs.
The hardware/software ratio of each subsystem
is at the discretion of the manufacturer, but
subsystems can be regarded conceptually as hav-
ing a hardware component and a software control
component. The action of the subsystem control
programs is coordinated by a further control
program, and a great amount of interaction is
necessary between these programs during the
setting up of a telephone call. The software
mechanisms necessary for internal message hand-
ling and process creation must be chosen with
great care bearing in mind the various trade-
offs possible, processor utilization, and the
definitions of the subsystem standard interfaces.

Introduction

Development of the British Telephone Net-
work is guided largely by the Advisory Group
on System Definition (AGSD) - a body consisting
of representatives from both the Administration
(British Post Office) and from the various manu-
facturers of telephone equipment. Any future
computer controlled telephone exchange which is
to be used in the United Kingdom will be subject
to constraints laid down by AGSD.

The concept currently proposed by AGSD is
to form an "overlay" network of Stored Program
Control (SPC) exchanges. By this is meant a
system which could start off life in a very small
way -~ possibly a single exchange - interworking
with the existing telephone network, and which-
could then grow in discrete stages. This would
form a new, small network of SPC exchanges,
which interfaced with the old network at selected
points. As the new overlay network grows, it
will slowly replace parts of the old, until
eventually the entire system will consist only of
SPC exchanges.

System Sttucture

Switching Units

The basic module of this new network is
known as a Switching Unit. Switching units are
of several different types, and each type can have
many different designs and constituent elements.
Basically, the function of each switching unit is
to provide facilities whereby various telephone
circuits can be monitored and interconnected un-
der the instructions of a centralized control.
This control may be located with the switching
unit, but equally may be remote and operate via a
data link. The centralized control is known as
a Processing Utility. The two most common types
of switching unit are:-

1. Subscriber Switching Unit

The Subscriber Switching Unit interfaces directly
with the telephone user, by means of wires from
the subscriber's premises. Fig. 1 indicates
schematically a subscriber switching unit, which,
with its interface to the existing network, could
provide the start of the new network.

‘@— SUBSCRIBER

SWITCHING
UNIT
PROCESSING
UTILITY
EXISTING
TRUNKS
Fig. 1

TYPICAL INTERCONNECTION OF SWITCHING UNITS

2. Main Switching Unit

The Main Switching Unit is normally connected
to a number of subscriber switching units, and
also may be connected to other main switching
units. This is indicated schematically in
Fig. 2.

Although figures 1 and 2 show the switching
units as connected by a single data link to a
single processing utility, more complex arrange-
ments will apply in practice, for security
reasons.

4. Manual Board Sybsystem
@:‘suescmsen This subsystem provides the second "human' inter-

SWITCHING face into the system (the first being the subscrib-
ql UNIT OTHER MAIN er). The subsystem must provide all facilities

SWITCHING UNIT necessary for operational staff to provide
assistance to subscribers, monitor and test lines
etc.

EXISTING
NETWORK | _ MAIN TO OTHER 5. Miscellaneous Terminations Subsystem
SWITCHING PROCESSING
EXISTING UNIT UTILITY This subsystem contains the various devices re-
NETWORK] quired by the administration - such as time
PROCESSING . Py
OTILITY announcement machmes: message tecordgrs, facili-
ties for interconnecting multi-subscriber calls.
@SUBSCR'““ The configuration of Fig. 2 is redrawn in
| SWITCHING Fig. 3 to show some subsystems which could typi-
unIT cally be involved, and the ways in which they
“ could interface with each other.
EXISTING —
TRUNKS | |
Fig. 2 | |
MAIN SWITCHING UNIT ﬁ_,l_i‘f;m‘,"‘; - I
| TRANSIT l
| SUDSYSTEN
Subsystems ' | susscrnen
Each of these switching units is composed I T ::::“""
of a number of distinct elements,known as sub- @_‘_ SUBSYSTEM |— |
systems. Subsystem units are so chosen to U
provide interfaces which can be rigidly defined, |\ ___!
and remain constant between equipment manu- GTHER MAIN
facturers, enabling equipments of various SWITCHING
designs to interwork satisfactorily. Each sub- . — Tt
system performs a distinct function within its I '
interface boundaries; it is the declared inten-
tion of AGSD to define these functions and |
. N . . EXISTING INTERFACE Misc
interfaces. Some typical functions which can LOCAL sunsysten TERMINATION |
readily form subsystems, however, are:- METVORK | TRANSIY SUBSYSTEM
| SUBSYSTEN l
1. Subscribers Subsystem | z I
This subsystem provides the complete interface
between a particular group of subscribers and "'“'l‘; INTERFACE L—— s':::vss‘r‘m ‘““:::;' [
the rest of the network. It provides all system TRUKKS s"","m' 1 s _sunsmtu
communication with the subscriber - for example I
it will provide dial tone and busy tone to the

; X . b
St.xbs-;cuber. ar'\d will accept dialled or keyed MAIN SWITCHING UNIT
digits from him. The subsystem also performs
some switching and concentration of subscribers
lines. _———— |

@l_swscmu
2. Transit Subsystem l SUBSTTEN - 1

. . . . eqs 3
This subsystem provides a switching facility,
and thus permits different subsystems to be
interconnected and cross connected as desired.

TRAKSIY

SUSSYSTEM
4

l
I
I
l
|
l
|
l

l .
3. Interface Subsystem | Fig. 3
This st:lbsystem is used to connec? the new net- | I INTERCONNECTION
work.thh Fhe old. It mus.t‘pfovu:le all types IMTERFACE OF SUBSYSTEMS
of signalling and all facilities in use on the | ’”";‘“"
particular existing junctions with which it is
connected. b e e | — .
SuBSCRIDER
SWITCHING UMIT
EXISTING

TRUNKS

Subsystem Structure

Subsystems are chosen to perform particular
functions within defined interfaces; the manner
in which the functions are performed will depend
upon the method of implementation chosen by the
particular manufacturer. This detailed implemen=-
tation can vary greatly - not only between manu-
facturers, but within manufacturers as technolo-
gies advance. In particular, the amount of work
performed by the hardware and the amount performed
by the software can vary. For example, consider
‘the hardware/software trade-offs which are possi-
ble in the design of the switchblock part of a
subsystem: =

The basic requirement is to connect one
particular input from a group of inputs, to a
particular output. Fig. 4 shows a group of 12
inputs and 6 outputs, and a possible method of
performing the connections by two stages of
switching — each point marked X represents a
switch or 'crosspoint'". It can be seen that by
judicious operation of two crosspoints, any input
can be connected by one of several paths to any
output - provided that the paths are not already
in use for another connection. Several methods
of arranging this connection are possible: for
example:-

1. Use of "intelligent" hardware, which would
accept the identities of the two terminals to be
connected, effect the connection if possible, and
then return a "success'" or "fail" message. This
solution requires a minimum of software.

2. VUse of simple hardware, which would merely
activate or deactivate any nominated crosspoint,
as instructed. This solution requires all the
work to be done by the software - even to the
extent of keeping a "map' of the crosspoints, in
which busy ones are marked, and from which an
available path can be selected, details of which
are sent to the hardware.

3, Use of hardware falling between these extremes
for example hardware which would activate and
de~gctivate nominated crosspoints, check and
report upon the success of the operation, and

also provide facilities for the software to
interrogate the state of nominated crosspoints.
This solution leaves the "intelligence' with the
software, but provides security for the current
details of crosspoint settings.

4, Use of solution 2. or 3. above, but placing
the necessary software in a local mini or micro
processor, which acts upon instructions received
from the processing utility.

O—o—yy— q
| i
Grfv ;
Ot i
\ |
C-ro |
O I e
1 r 2
S e : i
A TO]
1 |
! i
- ————— —— e
oo ': ! |
O—+o ! i !
o | 9350
i : - -
G—A—l‘
i
= | U e
MRXES |
]
|
e |
! |
ik

Fig. 4

TYPICAL 2-STAGE SWITCHING

Since it is possible for any subsystem to
contain software, it is logical to consider each
subsystem as consisting of two interdependent
parts - the hardware, and the software within
the processing utility. Any program structure,
therefore, will conceptually contain a number of
distinct subsystem control programs, but in the
limit of complex hardware or local mini-processor
implementation, the control programs will be
simple message handlers.

These subsystem control programs must be
able to transmit and receive messages to and from
their hardware counterparts. The physical means
of this message transmission may include a data
link, and most probably will include methods of
multiplexing and de-multiplexing along some
message transmission medium - for example the
normal I/0 handling software of the virtual
machine in the processing utility could inter-
leave messages for different subsystems along a
single highway. The content of these messages
is private between the hardware and software
parts of the subsystem (though the format may be
affected by the communications medium); the
transmission means should ideally be transparent.
The interposition of additional hardware and
software between the subsystem hardware and its
control program in order to resolve message
addressing and transmission problems in no way
7iolates the concept of the subsystem with def-
ined interfaces; it merely provides a trans-
parent interconnection. Figure 5 shows schem-
atically the type of arrangement that could
exist for the system depicted in Figure 3.

Each hardware subsystem has its software counter-
- part in the processing utility. The points marked
X indicate interfaces which are likely to be def-

ined as AGSD standard interfaces - these are
interfaces at the software end of the subsystems;
other interfaces subject to definition lie at the
hardware end at the human interfaces.

r‘_—-—'_--_——--"'“'l r— = = =

TRANSIY TRARSIT
LESTST IBTLRFSCEY FINTERFACHT pOu22VETIN
SUBSTSTEN 0 TETON | PR STSTIN :
i 2

[1 i I

l [1 I

i

!]

! IR NI, FsusceiBO |

| SENSTITON) |

{ |

| |

|

! |
I

I
|
|
| 1 2
|
|
|

-
\ [
' TRANMY
nisc TRARSIT LTY]TYY | suadvsren | avens
(TCRIGHAT g agiia] soane SO EYSTL 4
LUSTYSTIN 3 : 3 b)
|
|
|

|
ull TRARSFIR W7 l&l"j
|

[BATA VRANSFLE ¥T LITY] [BATA TRANSFES ETILITY J
SUBICRIBER " somcants
SuesCaiete
SWITCRIKG
SITCARS
(L0 (11}
HARDWARE
PROCESSING BTILITY (NPUT/OWTPYT WAXDLER
SOFTWARE

SUBSTSTENS CORTROL
PROGRANS

Fig. 5

In practice the arrangement will probably
differ from that shown in Figure 5. Frequently
a single manufacturer will be responsible for a
complete switching unit - if not for several co-
located switching units. Two or more similar
hardware subsystems could be controlled by a
single control program, operating upon several
data bases. Also, economics could dictate that
certain pieces of equipment be shared by several
subsystems. The hardware part of each subsystem
consists of several devices, which are each treat*
ed as peripheral units. One of these equipments
for example, which is often expensive, is called
a Marker. The marker is the peripheral which
controls the operation of crosspoints in the

TYPICAL INTERCONNECTION OF HARDWARE AND SOFTWARE SUBSYSTEMS

switchblock, as explained previously.
m:y well have the capacity to control more than
orie switchblock, so its costs could.- be shared

A marker

among subsystems located together. Figure 6
indicates a possible method of re-structuring

the software configuration of Figure 5. The
handling programs for the individual peripherals
(such as the marker) are shown, and these

programs communicate with the subsystem control
program proper, which must co-~ordinate the opera-
tion of the peripherals in its subsystem hardware.
Only one subscriber subsystem control program is
shown - this will handle al] three subsystems from
three separate data bases; similarly for the other
subsystems.

I PROCISSING UTILITY 1RPUT/GUTPUT NASSLER]

nAEDLER nadLER RANDLER

Fig. 6

TYPICAL SUBSCRIBER SUBSYSTEM PROGRAM

PERPRELALS

A software structure is now starting to
emerge. A number of software "modules' have
been identified, and some have software inter-
faces which are the subject of future definitions
The word module is used in the sense of a self-
contained piece of software, which could be writ-
ten and tested in isolation. As yet, no means
of co-ordinating the operation of these modules
has been mentioned; it is here that the concept
of a Control Area is introduced. A Control Area
consists of a group of switching units which are
controlled by the same processing utility, and
within which it is possible to select overall the
path that will be used by a particular call, before
that path is set up. In Figure 6, a software
module called Area Control has been introduced,
and this co-ordinates the operation of the in-
dividual subsystem control programs. The area
control program can be regarded as holding the
intelligence for the call, and the gubsystems
execute specific commands given by area control.

Internal Communication

Consider the type of interaction that will
be necessary between the software modules of
Figure 6 - for example when a subscriber in sub-
scriber subsystem 1 wishes to make a call to a
subscriber in subscriber subsystem 3 (Figure 3).
The first indication that a call is to be made
is given by the subscriber lifting off his hand-
set; this event is detected by a peripheral called
a Subscribers Line Circuit within the subscribers
subsystem. The event will pass via the I/0 mess-
age handler, peripheral handler and subsystem
control program to the area control program which
must examine its records to determine the type
of gervice permitted to the particular subscriber.
If dialling out is permitted, the subscriber sub-
system will be instructed to connect the approp-
riate type of digit receiver, in anticipation of
keyed or dialled digits, to connect any super-
vigsory circuits that may be required, and to
connect dial tone to the line. As digits are
received, they pass via the chain to the area
control program until eventually sufficient digits
have been received to determine the destination
of the call. After checking the availability and
status of the called subscriber, instructions must
be provided to the appropriate subsystems at the
apprdpriate times to provide ringing current . to
the called subscriber, ring tone to the calling
subscriber, to remove these conditions, to set up
a path via the two transit subsystems, to check
upon the continuity of the path - and eventually
to clear down all connections. Should the dest-
ination lie in a different control area, messages
must be sent either directly to the destination
control area or to some intermediate (transit)
control area which must itself activate appropriate
subsystems. :

It can be seen then, that within the software

structure which has now emerged, there is a great
' requirement for the passing of messages between
individual modules. Careful study must be given
during system design to the mechanisms that will

be involved in message handling, and the closely
sllied topic of process creation. It is assumed
that all modules are written in a re-entrant
manner, so that conceptually one or many pro-
cesses using a particular module may be in
existence simultaneously. The term "process"

is here used in the dynamic sense, to mean the
gerial execution of the code in a module or
program. A process may be associated with a
particular module, or it may be associated with
a message, for .example, and cross module boun-
daries.

Figure 6 shows that each module contains a
discrete number of "message ports" or, in other
worlls, has a number of interfaces across each
of which particular types of message could be
expected. An extremely simple mechanism could
be to place at each such input port a message
queue., This queue is loaded by the output port,
which generates the message, calling upon &
common, centralized queue loading mechanism.

The call to the queue loader specifies the name
of the wanted queue, and the loader locates the
queue by using a close association with the
space allocation mechanism. (Absolute addresses
could not be used, because in a system of this
nature with a requirement of many years mean time
between failures, it is necessary to move prog-
rams and data around, when system components
either fail or are released for scheduled
maintenance). Once one of these modules is
scheduled, it runs until all its queues have
been emptied, at which point it terminates. The
time scheduling algorithm can be constructed to
any arbitrary degree of complexity. This system
has several attractions - the time and space
overheads involved are quite small, and there is
no danger of messages getting out of sequence and
"“jumping their queues'. Also no contentious
arise for file access; since only one process
exists on any particular module at any instant
access to that module's in-core data bases need
not be- subject to any lock and key control.

This system, however, could become quite
inefficient as traffic grew. The number of
processes is equal to the number of software
modules - but it is quite probable that the
processing utility consists of a number of
processors working in parallel in a load-sharing
manner. The precise number of processors is of
no interest to the applications programs, provided
that collectively the processors provide suffic-
ient processing power; the supervision and co-
ordination of the individual processors can be
regarded as a function of the "virtual machine'.
The net result, however, is that several processes
may be able to run concurrently. The system of
one process per module forces all telephone calls
to queue for sequential service by the area con-
trol program, whereas logically there is no
reason why separate calls should not be processed
in parallel by use of several processes on
several processors - thus removing what could
become a serious bottleneck on processor time

utilization as traffic increased.

Such considerations lead to the proposal of
creating a separate process for each telephone
call. As this process completes execution of oae
module, it transfers control to the next module
required by the particular call. Data associated
with a particular call is carried in the "process
base', or workspace associated with the process,
and this reduces the overhead of message passing
between processes. A number of difficulties are
found with this approach, however. All messages
entering the system require a certain amount of
processing bafore thay can be associated with a

particular call, and it is only when a message has

travelled a certain distance that it can be picke
up by its parent process - and this distance will
depend upon the point at which the parent process
last suspended. Parallel processing of certain
activities associated with a call is not possible
for example, in the subscriber call described
previously, the parallel actions by the two sub-
scriber subsyatems of setting up ring tone and
ring current would need to be carried out se-
quentially (although of course each subsystem
could be simultaneoualy active upon different
calls). Even more serious difficulties are en-
countered when a call requires to be handled by

Obviously, none of these systems represents
black or white; all are shades of grey. An
attractive compromise is to treat different types
of module in different ways. The 1/0 message
handler is reslly a function of the processing
utility, but can be considered here as being in
two parts; input, and output. The input part is
a single process, which is scheduled at regular
intervals, and once scheduled runs cyclically
until all incoming messages have been handled.

As each message arrives, the addresses and other
information from the Data Transfer Utility will
identify the device from which the message orig-
inated, and the message is then passad to the
appropriate peripheral handler (by the semaphore
wmechanism), where a process is activated for the
particular message. The output part is also a
single process, which is activated whenever a mess-
age.is gsent to it via a semaphore, from any peri-
pheral handler program; having dealt with the
message, the process suspends itself awaiting the
next wedsage.

d

The peripheral handler processes, in the case
of input, will "funnel” down to a single process,
which runs the subsystem control program. This
funnelling can be achieved by private queues, in
the case of unshared peripherals, or by use of the

a second (or third) control area - it is not feas- semaphore mechanism for peripheral handlers shared

ible for the process to cross contrcl area boun-
daries. This approach also entails a process
crossing a subsystem ''standard interface" which
ideally should be defined in terms of messages
only.

" Yet another possibility is to use a process
per wodule per telephone call. This approach
requires a message passing mechanism which can’
deal with a high message rate, and which can
associate messages wuth processes. The combina-
tion suggests a centralized system which uses
semaphores for communication, and which is
intimately associated with the time scheduler.
The system must also allow information to be
passed with each semaphore. Such a general
mechanism is currently being implemented by one
telephone manufacturer; it is conceptually sim-
ple, and flexible in application, permitting
easy system expansion. .

The mechanism readily provides association
of messages with processes, and provides for re-

between subsystems. The single subsystem process
can now service its messages in cyclic fashion,
and has no contention problems for its files.

In the case of subsystem control programs con-
trolling several different subsystems, each on
its own database, there is one process per data-
base.

At control area level, yet another arrangement
applies. Comnunication with the szubsystem control
programs is handled by the semaphore mechanism,
thus maintaining a message interface. Each instruc-
tion given to the subsystem is accowpanied by a
"tag" which unigquely identifies the particular
call (for example a call number) end this tag is
later returned by the subsystem when reporting
upon the action performed. Within the area con-
trol program, a process is initiated which handles
the originating part of all calls. Wnen the
initial message comes from the subscribera sub-
system indicating that the handset has been
lifted, this Originating Call Process allocates
the unique tag to the call and handles the

activation of suspended processes. Great care must early parts of call set up. This single process

be exercised in its use, however, because of the
space and time overheads inherent in.such an
approach. Even though it provides a useful mech-
anism for the process per module per telephone
call. Some problems still remain with this
approach - such as the file locking problem men-
‘tioned previously. For example, in a subsystem
which contains a switchblock,.-4nd which maintains
a store image of that switchblock, each call
which uses the image to select a path will re-
quire unique access to the image for duration of

limits itself to handling a fixed number of calls
the number is dependent upon the structure of the
processing utility; once the number is exceeded,
a further parallel process is created to handle
subsequent calls (thus ensuring equitable use of
processing resources). Once sufficient is known
about the destination of the call, a second pro-
cess is created. This procecss may be in the

same control area or a different control area,
depending upon the destination of the call -
creation of the second process, however, ensures

the path choice algorithm; some method of constrainmi that all calle can be treated in standard manner,
is necessary if a process per module per telephone whether they be inter or intra control area. .The

call approach is used.

second process may be a Terminating Call Process,

but the originating and terminating call processes
can be separated by one or more Transit Call Pro-
cesses, if the call needs to pass through several
control areas. FEach such process runs in a cyclic
manner, and will itself create further processes

as the traffic load increases. All these processes
existing in the area control program communicate
with the subsystems by the semaphore mechanism.

Conclusions

This approach is by no means the only possible,
but it does illustrate the type of mechanisms
which are necessary for the organizing of inter-
communication between various parts residing in-
side an SPC computer system. Most of the work
currently being performed in this area is subject
to change, since the definition of the interfaces
is not yet available. As detailed implementation
of SPC progresses, however, manufacturers are
solving problemg in increasing detail, thus per-
mitting interface and functional definitions
to be arrived at which are both efficient and
enduring.

Acknowledgement

The author wishes to thank his many coll-
eagues upon whose work this paper is based and
the Management and Directors of The Plessey
Company for permission to make this information
available.

